积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(6)人工智能(6)

语言

全部英语(3)中文(简体)(2)zh(1)

格式

全部PDF文档 PDF(6)
 
本次搜索耗时 0.134 秒,为您找到相关结果约 6 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 中文(简体)
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    12政企、创业者必读 DeepSeek出现之前 我们对大模型发展趋势的十大预判 13政企、创业者必读 14 DeepSeek出现之前的十大预判 之一 传统AGI发展步伐在放慢 需要寻找新方向  Scaling Law边际效应递减  人类训练数据接近枯竭  合成数据无法创造新知识  推理能力难以泛化,成本高昂 全面超越人类的人工智能在逻辑上不成立政企、创业者必读 15 DeepSeek出现之前的十大预判 25 颠覆式创新的四种方式政企、创业者必读 DeepSeek-R1突破了大模型Scaling Law瓶颈 导致大模型悲观论 认为大模型的能力无法进一步得到质的提升 开辟强化学习新范式 从预训练Scaling Law转变为强化学习Scaling Law 大数据+大参数+大算力的 预训练Scaling Law的边际效应递减 • 人类构造的训练数据已达上限 • 万亿参数规模之后,继续增大参数规 训练算力成本和工程化难度大幅上升 强化学习Scaling Law • 利用合成数据解决数据用尽问题 • 利用self-play强化学习,在不增大参 数规模前提下,大幅提升复杂推理能力 • 通过后训练算力和推理算力,在不增加 预训练算力前提下,大幅提升模型性能 DeepSeek颠覆式创新——技术创新 26政企、创业者必读  预训练模型如GPT——疯狂读书,积 累知识,Scaling law撞墙  预训练模型思考深度不够
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    we employ additional RMS Norm layers after the compressed latent vectors, and multiply additional scaling factors at the width bottlenecks (i.e., the compressed latent vectors and the intermediate hidden Slightly diverging from original YaRN, due to our distinct attention mechanism, we adjust the length scaling factor to modulate the attention entropy. The factor √ ? is computed as √ ? = 0.0707 ln ? + 1, intelligence. • In our ongoing exploration, we are dedicated to devising methods that enable further scaling up MoE models while maintaining economical training and inference costs. The goal of our next step
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    threadIdx.y/warpDim.y*warpDim.y badGimy -8 y warpDim.y = 32/warpDim.x = 32/blockDim.x Loop scaling We 。, “UN1T1a:111T1a SUMT1C(G 了引包cf =“c=1JoalB)ioat人+C XC6CT6IT6032 三Dloss5ca/9g=gsca/e ctom7 No need to modify or add any line of code. 计算平台事业部 COMPUTING PLATFORM Loss Scaling in TF 下和全于由 loss = loss_fn() opt = tf.Adamoptimizer(learning_rate=...) # minimize() on the loss scale optimizer. train_op = loss_scale_optimizer.minimize(1oss) Loss Scaling in PAI-TF Loss Scaling the loss using S 了 Backward propagation in MP N 放gradients( Y ) Unscaled gradients
    0 码力 | 26 页 | 5.82 MB | 5 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    限于该数据集的领域或问题。因此,这类模型的应用范围较为局限,通常只 能解决特定领域或单一任务的问题。 Scaling Laws 大家可能在很多场合都见到过。它是一个什么法则呢?大 模型之所以能基于大量多样化的数据集进行训练,并最终“学得好”,核 心原因之一是 Scaling Laws(扩展规律)的指导和模型自身架构的优势。 Scaling Laws 指出参数越多,模型学习能力越强;训练数据规模越大、越多 元化,模 元化,模型最后就会越通用;即使包括噪声数据,模型仍能通过扩展规律提 取出通用的知识。而 Transformer 这种架构正好完美做到了 Scaling Laws, Transformer 就是自然语言处理领域实现扩展规律的最好的网络结构。 2.2 Transformer 基础架构 LLM 依赖于 2017 年 Google 提出的 Transformer 模型,该架构相比传统的 RNN(递归神经网络)和
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • pdf文档 Trends Artificial Intelligence

    infrastructure investments slowed & revenue grew… will AI follow? From 2020, AWS began rapidly scaling CapEx (+30% Y/Y) to build AI / ML infrastructure, potentially restarting cycle CapEx Spend @ Amazon infrastructure specialists is emerging to meet this demand. CoreWeave has become one of the fastest-scaling cloud GPU providers, repurposing gaming and Crypto hardware supply chains to serve enterprise AI highly performant AI cloud infrastructure required for the most advanced applications. We are scaling as fast as possible to capture that demand. The future runs on CoreWeave. - CoreWeave CEO Michael
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    visitors coming to the site every month—these increases scale up to significant business impact. But scaling up also meant using more tokens. To increase efficiency, OpenAI and Indeed 
 worked together to fine-tune
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
共 6 条
  • 1
前往
页
相关搜索词
周鸿祎清华演讲DeepSeek我们带来创业机会360202502V2StrongEconomicalandEfficientMixtureofExpertsLanguageModelPAITVMMeetupShanghai20191116图解10PDFTrendsArtificialIntelligenceOpenAIAIintheEnterprise
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩