积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(14)人工智能(14)

语言

全部英语(6)zh(5)[zh](1)fj(1)日语(1)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 14 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • [zh]
  • fj
  • 日语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Bring Your Own Codegen to TVM

    Amazon/Intel Confidentia Presenter: Zhi Chen, Cody Yu Amazon SageMaker Neo, Deep Engine Science Bring Your Own Codegen to TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved dense, ReLU, etc) Now your customer wants to run a YOLO model, but... ResNet-50 Dense Non Maximum Suppression Non Maximum Suppression (NMS) is too new to be supported by your chip But NMS is supported Compiler of Your Chip Your chip can run any models Your compiler (TVM) supports multiple frontends (e.g., TensorFlow, PyTorch, MXNet) Non Maximum Suppression ResNet-50 Dense Your Chip Your Chip© 2019
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    Family Command R Family Qwen1.5 Family (a) 0 50 100 150 200 250 300 DeepSeek-V2 DeepSeek 67B saving 42.5% of training costs Training Costs (K GPU Hours/T Tokens) 0 100 200 300 400 DeepSeek-V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5 Conclusion, Limitation, and Future Work 21 A Contributions and Acknowledgments 27 B DeepSeek-V2-Lite: A 16B Model Equipped with MLA and summarize the conclusion, deliberate on the current limitations of DeepSeek-V2, and outline our future work (Section 5). 2. Architecture By and large, DeepSeek-V2 is still in the Transformer architecture
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    new way to work 3 Executive summary 5 Seven lessons for enterprise AI adoption Start with evals 6 Embed AI into your products 9 Start now and invest early 11 Customize and fine-tune your models 13 AI in the hands of experts 16 Unblock your developers 18 Set bold automation goals 21 Conclusion 22 More resources 24 2 AI in the EnterpriseA new way 
 to work As an AI research and deployment company OpenAI prioritizes partnering with global companies because our models will increasingly do their best work with sophisticated, complex, interconnected workflows and systems. We’re seeing AI deliver significant
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    effective prompt can be complicated. Many aspects of your prompt affect its efficacy: the model you use, the model’s training data, the model configurations, your word-choice, style and tone, structure, and When prompt engineering, you will start by choosing a model. Prompts might need to be optimized for your specific model, regardless of whether you use Gemini language models in Vertex AI, GPT, Claude, or need to tinker with the various configurations of a LLM. LLM output configuration Once you choose your model you will need to figure out the model configuration. Most LLMs come with various configuration
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    report to life. And, to the many friends and technology builders who helped, directly or via your work, and are driving technology forward.• Seem Like Change Happening Faster Than Ever? Yes, It Is • Global Internet User Ramps Powered by AI from Get-Go = Growth We Have Not Seen Likes of Before • AI & Work Evolution = Real + Rapid 3 1 2 3 4 5 6 7 8 9-51 52-128 129-152 153-247 248-298 299-307 Source: Sensor Tower (5/25) 5/23 4/25 Mobile App Monthly Active Users, MM Details on Page 315 AI & Work Evolution = Real + Rapid 8 USA IT Jobs – AI vs. Non-AI Details on Page 302 +448% -9% 1/18
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 TVM@AliOS

    primitive completely, no tensorize 。 Some Experience: 1 Avoid DataPack 2. Generate SMLAL instruction if your ARM does not have dot 3. compute_at is very important /NiiOS ! 驱动万物智能 Alios TVM @ ARM CPU INT8 Alios TVM @ Hexagon DSP 。, Performance is our focus next. We tvm.caLL_pure_intrin begin to do some work now. Such 本 站,可 as writing Tensorize to generate vec tvm,const(0, vrmpy instruction
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
  • pdf文档 TVM@Alibaba AI Labs

    Alibaba ALLabs 阿里巴巴人工智能实验室 Blocking Splits the workload into thread blocks (work groups) and individual threads (work items) Processing Element batch 二 (workitem) 2 下 罗汪| 门一一 Compute Unit 和 | (Work group) 名 | | | Apady+m in_channel x+p -一一 人 下| [lm ] Cooperative Fetching Lets threads (work item) in the same thread block (work group) cooperatively fetch dependent data https/www khronos.org/registry/DpenCLspecs/opencl-1
    0 码力 | 12 页 | 1.94 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    practices to ensure your agents run safely, predictably, 
 and effectively. After reading this guide, you’ll have the foundational knowledge you need to confidently start building your first agent. 3 A behalf with a high degree of independence. Agents are systems that independently accomplish tasks on your behalf. A workflow is a sequence of steps that must be executed to meet the user’s goal, whether that's guide to building agents When should you build an agent? Building agents requires rethinking how your systems make decisions and handle complexity. Unlike conventional automation, agents are uniquely
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    transcendentals (exp, tanh, erf, etc) - very general technique, allows clean vectorization - Related work in Gibiansky (2017), Gray (2019), et al. Image from OpenAI- Add relay.nn.sparse_dense for block-sparse reinterpret to implement rational approximations in user space (~10 lines of Relay IR) - A few days of work - TVM sampling model running in 30us on single server CPU core - Beat hand-written, highly optimized
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 TVM Meetup: Quantization

    scratch • New Relay passes and TVM schedules required • AlterOpLayout, Graph Fusion etc require work/operator • No reuse of existing Relay and TVM infrastructure. Option 2 – Lower to a sequence of of existing Relay operators • We introduced a new Relay dialect – QNN to encapsulate this work • Complete reuse of Relay pass infrastructure • Possible reuse of TVM schedules (only to some extent)© 2019
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
BringYourOwnCodegentoTVMDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelOpenAIAIintheEnterpriseGooglePromptEngineeringv7TrendsArtificialIntelligenceAliOSAlibabaLabspracticalguidebuildingagentsFacebookAWSMeetupTalkQuantization
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩