积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(9)人工智能(9)

语言

全部英语(5)fj(1)zh(1)中文(简体)(1)中文(简体)(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.027 秒,为您找到相关结果约 9 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • fj
  • zh
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 TVM@Alibaba AI Labs

    Optimizations Symbols NNVM & Param Frontends Operators Algorithm &Schedule CUDA TOPI Backends Machine Learning Automated Optimizer Schedule explorer Cost model Mali TOPI ROCM TOPI PVRTOPI
    0 码力 | 12 页 | 1.94 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    token will lie between ?? and ??? and matrix multiplication does not obey a commutative law. As a result, we must recompute the keys for all the prefix tokens during inference, which will significantly remain a liquid D. become a solid Answer: Table 13 | An example of ARC. 35 PROMPT Evaluate the result of a random Boolean expression. Q: not ( ( not not True ) ) is A: Let’s think step by step. Remember is_not_prime(35) == True [BEGIN] import math def is_not_prime(n): result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result [DONE] You are an expert Python programmer, and here
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    updates regularly, getting feedback, and improving performance and safety at every step. The result: users access new advancements in AI early and often—and your feedback shapes future products and source code. Security, guardrails, and routing logic are all built in. 18 AI in the EnterpriseAs a result, AI app development has accelerated dramatically, helping Mercado Libre employees do amazing things systems of record on behalf of users, without technical instructions 
 or API connections. The result: end-to-end automation, freeing teams from repetitive tasks and boosting efficiency across the enterprise
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    put: result = Runner.run(churn_detection_agent, , context=ctx.context) GuardrailFunctionOutput( output_info=result.final_output, tripwire_triggered=result.final_output
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    services could presage an era of peace and plenty. The capacity to accelerate scientific research could result in cures for disease and solutions for climate change and resource shortages. As Demis Hassabis AI gets used more, total infrastructure and compute demand rises – dragging costs up again. The result is a flywheel of growth that puts pressure on cloud providers, chipmakers, and enterprise IT budgets different domains. Some are optimized for reasoning, others for speed or code generation. The result is a move away from vendor lock-in. Instead of consolidating under a single provider who can gate
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    be diverse, of high quality, and well written. One small mistake can confuse the model and will result in undesired output. If you are trying to generate output that is robust to a variety of inputs, run(prompt) Snippet 1. Creating a ReAct Agent with LangChain and VertexAI Code Snippet 2 shows the result. Notice that ReAct makes a chain of five searches. In fact, the LLM is scraping Google search results table, it’s also helpful to track the version of the prompt (iteration), a field to capture if the result was OK/NOT OK/SOMETIMES OK, and a field to capture feedback. If you’re lucky enough to be using
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 Dynamic Model in TVM

    Instruction Description Move Moves data from one register to another. Ret Returns the object in register result to caller’s register. Invoke Invokes a function at in index. InvokeClosure Invokes a Relay closure
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    操作路径多元、开放, 且对结果没有明确要求 DeepSeek 两种模型对比(5R) 维度 V3模型 R1模型 Regulation (规范性) 强规范约束 (操作路径明确) 弱规范约束 (操作路径开放) Result (结果导向) 目标确定性高 (结果可预期) 目标开放性高 (结果多样性) Route (路径灵活性) 线性路径 (流程标准化) 网状路径 (多路径探索) Responsiveness (响应模式)
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    their large volume expansion and shrinkage during the lithiation and delithiation process. This can result in the formation of cracks, active material separating from the current collector, and a disrupted
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
共 9 条
  • 1
前往
页
相关搜索词
TVMAlibabaAILabsDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelOpenAIintheEnterprisepracticalguidetobuildingagentsTrendsArtificialIntelligenceGooglePromptEngineeringv7Dynamic清华华大大学清华大学第二赋能职场DeepResearch科研
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩