积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(13)人工智能(13)

语言

全部英语(5)zh(3)fj(1)kor(1)ro(1)中文(简体)(1)中文(简体)(1)

格式

全部PDF文档 PDF(12)TXT文档 TXT(1)
 
本次搜索耗时 0.039 秒,为您找到相关结果约 13 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • fj
  • kor
  • ro
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    Internet business is like a dog year – equivalent to seven years in a regular person's life.’ At the time, the pace of change catalyzed by the internet was unprecedented. Consider now that AI user and usage innovation / product releases / investments / acquisitions / cash burn and capital raises. At the same time, more traditional tech companies (often with founder involvement) have increasingly directed more capital is deployed, and how leadership is defined – across both companies and countries. At the same time, we have leadership evolution among the global powers, each of whom is challenging the other’s competitive
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    MLA, which utilizes low-rank key-value joint compression to eliminate the bottleneck of inference-time key-value cache, thus supporting efficient inference. For FFNs, we adopt the DeepSeekMoE architecture Pre-Training 3.1. Experimental Setups 3.1.1. Data Construction While maintaining the same data processing stages as for DeepSeek 67B (DeepSeek-AI, 2024), we extend the amount of data and elevate the data order to alleviate the alignment tax, during the RL stage, we make significant efforts in data processing and improving training strategies, finally achieving a tolerable trade-off between the performance
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    prompt’s writing style and structure in relation to the task. In the context of natural language processing and LLMs, a prompt is an input provided to the model to generate a response or prediction. Prompt uncover intel suggesting the enemy is planning a devastating attack, and the player must race against time to gather evidence and relay it back to their headquarters before the enemy can carry out their plans seem like a good fit for a first-person video game. Let’s go back to the original prompt, but this time we include the answer of the step back as context and see what it will return. Prompt Engineering
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    
 extracting meaning from documents, or interacting with 
 users conversationally, for example processing a home insurance claim. Before committing to building an agent, validate that your use case can WebSearchTool, function_tool @function_tool save_results(output): db.insert({ : output, : datetime.time()}) return "File saved" search_agent = Agent( name= , instructions= tools=[WebSearchTool() losing context or control, the manager intelligently delegates tasks to the right agent at the right time, effortlessly synthesizing the results into a cohesive interaction. This ensures a smooth, unified
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    AccelModule:© Copyright 2018 Xilinx TVM Partitioning >> 7 Subgraph 1 Parallel Subgraphs Post-Processing Pre-Processing FPGA or CPU FPGA CPU CPU FPGA - More than supported/not supported, pattern matching graph Parallel Subgraphs Post-Processing Pre-Processing CPU FPGA CPU CPU FPGA© Copyright 2018 Xilinx TVM Code Generation >> 9 Subgraph 1 Parallel Subgraphs Post-Processing Pre-Processing CPU FPGA CPU CPU FPGA
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 TVM@Alibaba AI Labs

    Blocking Splits the workload into thread blocks (work groups) and individual threads (work items) Processing Element batch 二 (workitem) 2
    0 码力 | 12 页 | 1.94 MB | 5 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    three fronts: 01 Workforce performance Helping people deliver higher-quality outputs in shorter 
 time frames. 02 Automating routine operations Freeing people from repetitive tasks so they can focus and effective. The premise was simple: If advisors could access information faster and reduce the time spent on repetitive tasks, they could offer more and better insights to clients.
 They started day; access to documents has jumped from 20% to 80%, with dramatically reduced search time; and advisors spend more time on client relationships, thanks to task automation and faster insights. The feedback
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    Affiliates. All rights reserved. “Any” in Relay typing Any: represent an unknown dimension at compilation time. Define a tensor type: Tensor<(Any, 3, 32, 32), fp32> Define type relation: arange: fn(start:fp32 reserved. Gradual typing: shape function ● Relax type inference/checking for Any at compilation time broadcast: fn(Tensor<(Any, Any), fp32>, Tensor<(1, 8), fp32>) -> Tensor<(Any, 8), fp32>© 2019, Amazon reserved. Gradual typing: shape function ● Relax type inference/checking for Any at compilation time ● Register a shape function for operator to check the type and compute the output shape© 2019, Amazon
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    Synthesis - WaveRNN-style model architecture - Autoregressive sampling net running at faster than real-time - Compute split between GRU units and FC layers - 24kHz sampling frequency requires 40us sampling hand-written, highly optimized baselines (https://github.com/mozilla/LPCNet) by ~40% - Bonus: Real-time on mobile CPUs for free 6 TVM specifics X78Structured and Unstructured Sparsity - Lots of 'free'
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    surface, while a compressive force was applied at a constant loading rate of 10 mm-min until the real-time force curve on the monitor screen fast drop indicating failure occurred. ln addition, the left surface, while a compressive force was applied at a constant loading rate of 10 mm/min until the real-time force curve on the monitor screen fast drop indicating failure occurred. 改写降重指令 指令:我想让你充当科研写作专
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelGooglePromptEngineeringv7OpenAIpracticalguidetobuildingagentsXDNNTVMNov2019AlibabaAILabsintheEnterpriseDynamicFacebookAWSMeetupTalk清华大学DeepResearch科研
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩