积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(16)人工智能(16)

语言

全部英语(7)中文(简体)(4)zh(3)kor(1)中文(简体)(1)

格式

全部PDF文档 PDF(15)TXT文档 TXT(1)
 
本次搜索耗时 0.027 秒,为您找到相关结果约 16 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 中文(简体)
  • zh
  • kor
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    multimodality across audio, visual, & text inputs 7/24: Apple releases Apple Intelligence, an AI system integrated into its devices, for developers 12/24: OpenAI announces o3, its highest-ever designate particularly influential models within the AI/machine learning ecosystem. Epoch maintains a database of 900 AI models released since the 1950s, selecting entries based on criteria such as state-of-the-art Unprecedented41 AI Performance = In 2024… Surpassed Human Levels of Accuracy & Realism, per Stanford HAI AI System Performance on MMLU Benchmark Test – 2019-2024, per Stanford HAI Note: The MMLU (Massive Multitask
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    Well-documented, thoroughly tested, and reusable tools improve discoverability, simplify version management, and prevent redundant definitions. Broadly speaking, agents need three types of tools: Type Description complicated instructions 
 or consistently select incorrect tools, you may need to further divide your system and introduce more distinct agents. Practical guidelines for splitting agents include: Complex r] ) order_management_agent = Agent( name= , instructions=( "Technical Support Agent", "You provide expert assistance with resolving technical issues, system outages, or product
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    Prompting techniques 13 General prompting / zero shot 13 One-shot & few-shot 15 System, contextual and role prompting 18 System prompting 19 Role prompting 21 Contextual prompting 23 Table of contents February 2025 18 System, contextual and role prompting System, contextual and role prompting are all techniques used to guide how LLMs generate text, but they focus on different aspects: • System prompting sets and behavior. There can be considerable overlap between system, contextual, and role prompting. E.g. a prompt that assigns a role to the system, can also have a context. However, each type of prompt serves
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 Manus AI:Agent元年开启

    »4 AI *+¼½()> • 9⃣ ETL«]^á²2¾¿¬5š›]^¥+CA+,ñ AI *+ÇÀÁ%WO> • *˜5DATAVOLOcNeedlecVerdat> • 🔟 ]^«Database¬5•‘C¥+ AI *+GÕÂÍÄÅ]^> • *˜5ChromacDrantcSupabasecPinecone«Æ¥]^¬ÇMongoDBc PostgreSQLcWeaviatecNeo4j«Å AgentŸ Ö×AgentS) cCÕ 'Agent ØCKx¦13 !"#$%Bloomberg*&'() >$2%AgentFG?@HIJKLM p Workday#$ Agent System of Record ! Workday #$G AI *+«AI Agents¬¥+,-,-G¼½ŒÙ! QŸcC¥+c4ÚC ªÛ®‰ AI *+«AI-powered agents¬,ÜÝÞß*+
    0 码力 | 23 页 | 4.87 MB | 5 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    of NPS surveys. 16 AI in the EnterpriseAnd the wins continue to spread across Marketing, Risk Management, Operations, and beyond. All because they got AI in the hands of the people who know how to apply thousands of tasks every month, freeing people to do more high-impact work. Not surprisingly, the system is now spreading across other departments. It happened because we set bold automation goals from
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    方法为语言任务提供了前所未有的性能,以此为基础,多模态融合的应用使得 LLM 更全面地处理各种 信息,支持更广泛的应用领域。 图源:https://postgresml.org/docs/.gitbook/assets/ml_system.svg 4 / 32 LLM 基础设施 01 03 02 04 向量数据库/数据库向量支持 为大模型提供高效的存储和检索能力 大模型框架及微调 (Fine Tuning) 年前四个月,向量数据库公司融资额 ,超过了 2022 年的总和 (图源:https://www.cbinsights.com/research/generative-ai-infrastructure- vector-database/) 7 / 32 LLM 基础设施:大模型框架及微调 (Fine Tuning) 大模型框架指专门设计用于构建、训练和部署大型机器 学习模型和深度学习模型的软件框架。这些框架提供了 必
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E. Gonzalez, H. Zhang, and I. Stoica. Efficient memory management for large language model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium n&=480/30=\boxed{16} \end{align*} Final Answer: The final answer is $16$. I hope it is correct. Problem: If the system of equations \begin{align*} 6x-4y&=a,\\ 6y-9x &=b. \end{align*}has a solution $(x, y)$ where $x$
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 亿联TVM部署

    TRUE); if (ret == WAIT_OBJECT_0) { cout << " Thread " << GetCurrentThreadId() << "writing to database...\n" << endl; } else if (ret == WAIT_ABANDONED) { cout << "Thread failed ...\n" << endl; }
    0 码力 | 6 页 | 1.96 MB | 5 月前
    3
  • text文档 00 Deepseek官方提示词

    更多 Deepseek 和 AI 资料,欢迎关注微信公众号【星禾光年 AI】,回复【deepseek】获取 1. 万能提示词生成模版:根据用户需求,帮助生成高质量提示词 SYSTEM 你是一位大模型提示词生成专家,请根据用户的需求编写一个智能助手的提示词,来指导大模型进行内容生成, 要求: 1. 以 Markdown 格式输出 2. 贴合用户需求,描述智能助手的定位、能力、知识储备 3 提示词应清晰、精确、易于理解,在保持质量的同时,尽可能简洁 4. 只输出提示词,不要输出多余解释 USER “ 请帮我生成一个 Linux ” 助手 的提示词 2. 文案大纲生成:根据用户提供的主题,来生成文案大纲 SYSTEM 你是一位文本大纲生成专家,擅长根据用户的需求创建一个有条理且易于扩展成完整文章的大纲,你拥有强大的 主题分析能力,能准确提取关键信息和核心要点。具备丰富的文案写作知识储备,熟悉各种文体和题材的文案大 创意性标题:为文章构思一个引人注目的标题,确保它既反映了文章的核心内容又能激发读者的好奇心。 USER “ ” 请帮我生成 中国农业情况 这篇文章的大纲 3. 中英翻译专家:中英文互译,对用户输入内容进行翻译 SYSTEM 你是一个中英文翻译专家,将用户输入的中文翻译成英文,或将用户输入的英文翻译成中文。对于非中文内容, 它将提供中文翻译结果。用户可以向助手发送需要翻译的内容,助手会回答相应的翻译结果,并确保符合中文语
    0 码力 | 4 页 | 7.93 KB | 8 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    How Would That Look Like?© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. System Overview Relay IR Graph Annotation with Your Annotator Graph Partitioning Your Codegen LLVM Inc. or its Affiliates. All rights reserved. Partition the Relay IR graph ● No user involvement System Overview Relay IR Graph Annotation with Your Annotator Graph Partitioning Your Codegen LLVM Inc. or its Affiliates. All rights reserved. Partition the Relay IR graph ● No user involvement System Overview Relay IR Graph Annotation with Your Annotator Graph Partitioning Your Codegen LLVM
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceOpenAIpracticalguidetobuildingagentsGooglePromptEngineeringv7ManusAIAgent元年开启intheEnterprise开源中国2023模型LLM技术报告DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModel亿联TVM部署00Deepseek官方提示BringYourOwnCodegen
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩