 Google 《Prompt Engineering v7》Metallica. Python from langchain.agents import load_tools from langchain.agents import initialize_agent from langchain.agents import AgentType from langchain.llms import VertexAI prompt = "How many kids do "$file")" mv "$file" "$new_file_name" done echo "Files renamed successfully." ``` Output ```python import os import shutil # Get the folder name from the user folder_name = input("Enter the folder name: ") # but what a bummer. It now returns Python errors! Prompt Engineering February 2025 49 Python import os import shutil folder_name = input("Enter the folder name: ") prefix = input("Enter the string to prepend0 码力 | 68 页 | 6.50 MB | 6 月前3 Google 《Prompt Engineering v7》Metallica. Python from langchain.agents import load_tools from langchain.agents import initialize_agent from langchain.agents import AgentType from langchain.llms import VertexAI prompt = "How many kids do "$file")" mv "$file" "$new_file_name" done echo "Files renamed successfully." ``` Output ```python import os import shutil # Get the folder name from the user folder_name = input("Enter the folder name: ") # but what a bummer. It now returns Python errors! Prompt Engineering February 2025 49 Python import os import shutil folder_name = input("Enter the folder name: ") prefix = input("Enter the string to prepend0 码力 | 68 页 | 6.50 MB | 6 月前3
 OpenAI 《A practical guide to building agents》with a series of tools when using the Agents SDK: Python 1 2 3 4 5 6 7 8 8 10 11 12 from import def agents Agent, WebSearchTool, function_tool @function_tool save_results(output): db SDK: Python 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 from import "manager_agent" "You are a translation agent. You use the tools given to you to translate." " 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 from agents import Agent, Runner technical_support_agent = Agent( name= instructions=(0 码力 | 34 页 | 7.00 MB | 6 月前3 OpenAI 《A practical guide to building agents》with a series of tools when using the Agents SDK: Python 1 2 3 4 5 6 7 8 8 10 11 12 from import def agents Agent, WebSearchTool, function_tool @function_tool save_results(output): db SDK: Python 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 from import "manager_agent" "You are a translation agent. You use the tools given to you to translate." " 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 from agents import Agent, Runner technical_support_agent = Agent( name= instructions=(0 码力 | 34 页 | 7.00 MB | 6 月前3
 Bring Your Own Codegen to TVMAffiliates. All rights reserved. Example showcase: Intel MKL-DNN (DNNL) library 1. Import packages import numpy as np from tvm import relay 2. Load a pretrained network mod, params = relay.testing.mobilenet.0 码力 | 19 页 | 504.69 KB | 5 月前3 Bring Your Own Codegen to TVMAffiliates. All rights reserved. Example showcase: Intel MKL-DNN (DNNL) library 1. Import packages import numpy as np from tvm import relay 2. Load a pretrained network mod, params = relay.testing.mobilenet.0 码力 | 19 页 | 504.69 KB | 5 月前3
 DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language Modelis_not_prime(2) == False assert is_not_prime(10) == True assert is_not_prime(35) == True [BEGIN] import math def is_not_prime(n): result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],5)==[85, 75, 65, 58, 35] [BEGIN] import heapq as hq def heap_queue_largest(nums,n): largest_nums = hq.nlargest(n, nums) return largest_nums0 码力 | 52 页 | 1.23 MB | 1 年前3 DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language Modelis_not_prime(2) == False assert is_not_prime(10) == True assert is_not_prime(35) == True [BEGIN] import math def is_not_prime(n): result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: assert heap_queue_largest( [25, 35, 22, 85, 14, 65, 75, 22, 58],5)==[85, 75, 65, 58, 35] [BEGIN] import heapq as hq def heap_queue_largest(nums,n): largest_nums = hq.nlargest(n, nums) return largest_nums0 码力 | 52 页 | 1.23 MB | 1 年前3
 TVM: Where Are We Goingruntime::Module High-level optimizations (Auto) Schedules Low-level optimizations Codegen Import LowerMixed Function Variants in the Same Module def @relay_add_one(%x : Tensor((10,), f32)) {0 码力 | 31 页 | 22.64 MB | 5 月前3 TVM: Where Are We Goingruntime::Module High-level optimizations (Auto) Schedules Low-level optimizations Codegen Import LowerMixed Function Variants in the Same Module def @relay_add_one(%x : Tensor((10,), f32)) {0 码力 | 31 页 | 22.64 MB | 5 月前3
共 5 条
- 1













