积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(6)人工智能(6)

语言

全部英语(5)中文(简体)(1)

格式

全部PDF文档 PDF(6)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 6 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    Goostman, a chatbot, passes the Turing Test, with 1/3 of judges believing that Eugene is human 6/18: OpenAI releases GPT-1, the first of their large language models 6/20: OpenAI releases vs. 2023 (1 year) AI Development Trending = Unprecedented41 AI Performance = In 2024… Surpassed Human Levels of Accuracy & Realism, per Stanford HAI AI System Performance on MMLU Benchmark Test – 2019-2024 knowledge and problem-solving in large language models. 89.8% is the generally-accepted benchmark for human performance. Stats above show average accuracy of top-performing AI models in each calendar year.
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    interact directly with those applications and systems through web and application UIs—just as a human would. Each tool should have a standardized definition, enabling flexible, many-to-many relationships messages. Send emails and texts, update a CRM record, hand-off a customer service ticket to a human. Orchestration Agents themselves can serve as tools for other agents—see the Manager Pattern in actions, such as pausing for guardrail checks before executing high-risk functions or escalating to a human if needed. 26 A practical guide to building agents Rules-based protections Simple deterministic measures
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    et al., 2024) to employ Group Relative Policy Optimization (GRPO) to further align the model with human preference and produce DeepSeek-V2 Chat (RL). We evaluate DeepSeek-V2 on a wide range of benchmarks Reinforcement Learning In order to further unlock the potential of DeepSeek-V2 and align it with human preference, we conduct Reinforcement Learning (RL) to adjust its preference. Reinforcement Learning employ a two-stage RL training strategy, which first performs reasoning alignment, and then performs human prefer- ence alignment. In the first reasoning alignment stage, we train a reward model ?????????
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    model condenses information, using 
 agreed-upon-metrics for accuracy, relevance, and coherence. 03 Human trainers Comparing AI results to responses from expert advisors, grading for accuracy and relevance process huge amounts of data from many sources, it can create customer experiences that feel more human because they’re more relevant and personalized. Indeed, the world’s No. 1 job site, uses GPT-4o find the right jobs—and understanding why a given opportunity is right for them—is a profoundly human outcome. Indeed's team has used AI to help connect more people 
 to jobs, faster—a win for everyone
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    heart of a murky abyss, lies a dilapidated underwater research facility, standing as a testament to human ambition and its disastrous consequences. Shrouded in darkness, pulsating with the hum of malfunctioning outsmarting cunning aquatic predators, every moment in this uncharted underworld tests the limits of human endurance and courage. Table 10. An example of prompting for self consistency That looks like an interesting Chain of Thought prompting section, the model can be prompted to generate reasoning steps like a human solving a problem. However CoT uses a simple ‘greedy decoding’ strategy, limiting its effectiveness
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    强化学习(Reinforcement Learning, RL) 采用强化学习(RL)方法进行优化,主要通过人类反馈强化学习(RLHF, Reinforcement Learning from Human Feedback): 强化学习(RLHF)优化过程 • 步骤 1:人类标注者提供高质量回答。 • 步骤 2:模型学习人类评分标准,提高输出质量。 • 步骤 3:强化训练,使得生成的文本更符合人类偏好。
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
共 6 条
  • 1
前往
页
相关搜索词
TrendsArtificialIntelligenceOpenAIpracticalguidetobuildingagentsDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelAIintheEnterpriseGooglePromptEngineeringv7图解10PDF
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩