积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(17)人工智能(17)

语言

全部英语(7)zh(5)[zh](1)日语(1)kor(1)ro(1)中文(简体)(1)

格式

全部PDF文档 PDF(17)
 
本次搜索耗时 0.040 秒,为您找到相关结果约 17 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • [zh]
  • 日语
  • kor
  • ro
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    User + Usage + CapEx Growth = Unprecedented • AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer Usage Rising • AI Usage + Cost + Loss Growth Page 293 USA – LLM #1 China USA – LLM #2 AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer Usage Rising 3 Cost of Key Technologies Relative competitive. Breakthroughs in large models, cost-per-token declines, open-source proliferation and chip performance improvements are making new tech advances increasingly more powerful, accessible, and economically
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times. We pretrain DeepSeek-V2 on a high-quality and even with only 21B activated parameters, DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models. The model checkpoints are available at h t t p s : / / g i t h u b . p S e e k - V 2 . 0 20 40 60 80 100 Activated Parameters (Billions) 55 60 65 70 75 80 Performance (MMLU) DeepSeek-V2 DeepSeek 67B LLaMA 1 33B LLaMA 1 65B LLaMA 2 13B LLaMA 2 34B LLaMA 2
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    up the LLM to predict the right sequence of tokens. Prompt engineering is the process of designing high-quality prompts that guide LLMs to produce accurate outputs. This process involves tinkering to find temperature (T), emphasizing a single, preferred temperature with high certainty. A higher Gemini temperature setting is like a high softmax temperature, making a wider range of temperatures around the irrelevant–the most probable token becomes the next token predicted. If you set temperature extremely high (above 1–generally into the 10s), temperature becomes irrelevant and whatever tokens make it through
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    and automate workflows, agents are able to perform the same workflows on the users’ behalf with a high degree of independence. Agents are systems that independently accomplish tasks on your behalf. A workflow well is to build your agent prototype with the most capable model for every task to establish a performance baseline. From there, try swapping in smaller models to see 
 if they still achieve acceptable fail. In summary, the principles for choosing a model are simple: 01 Set up evals to establish a performance baseline 02 Focus on meeting your accuracy target with the best models available 03 Optimize for
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    energy storage technologies allow intermittent renewable energy to replace traditional energy. High-performance secondary batteries are one of the most promising candidates for large-scale energy storage storage devices with their high output voltage, high energy density, and long cycle life. In order to meet the strong demand for further improving its electrochemical performance, the search for sustainable materials that provide lithium-ion batteries with safe and stable cyclic performance, while providing high capacity and high voltage curves, has sparked in-depth research and discussion. As a promising
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    We’re seeing AI deliver significant, measurable improvements on three fronts: 01 Workforce performance Helping people deliver higher-quality outputs in shorter 
 time frames. 02 Automating routine product improvements. That means shipping updates regularly, getting feedback, and improving performance and safety at every step. The result: users access new advancements in AI early and often—and Set bold 
 automation goals Most processes involve a lot of rote work, ripe for automation. Aim high. Let’s drill down into each of these, with customer stories as examples. 5 AI in the EnterpriseLesson
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    DNN Specific Instruction Set Convolution, Max Pool etc. ˃ Any Network, Any Image Size ˃ High Frequency & High Compute Efficiency ˃ Supported on U200 – 3 Instances U250 – 4 Instances Amazon F1 ˃ ~1536 c_char_p(graph_path.value).value layout = c_char_p(output_layout.value).value … >> 12© Copyright 2018 Xilinx Performance Pipelines ˃ References to our latest results: https://github.com/Xilinx/AI-Model-Zoo (embedded measurements we track: Latency & Throughput ˃ ML pipeline contains multiple stages, performance limited by slowest one ˃ Performance results based on Xilinx own runtime pipeline available in github (https://github
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    optimized Open source, automated end-to- end optimization framework for deep learning.TVM Stack High-Level Differentiable IR Tensor Expression and Optimization Search Space LLVM, CUDA, Metal VTA Edge Edge FPGA Cloud FPGA ASIC Optimization AutoTVM Device FleetExisting Deep Learning Frameworks High-level data flow graph Hardware Primitive Tensor operators such as Conv2D eg. cuDNN Offload to Engineering intensiveMachine Learning based Program Optimizer TVM: Learning-based Learning System High-level data flow graph and optimizations Directly generate optimized program for new operator workloads
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    TVM at Facebook Lots of contributors at FB and elsewhere- Performance matters a lot - Heterogenous computing environment - High variety of workloads - Ever-increasing set of primitives (over 500 500 aten kernels) - Interpreter methods not delivering generalized performance 2 Why TVM? XTVM for Speech Synthesis - WaveRNN-style model architecture - Autoregressive sampling net running at faster
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    Models) Host Device High-Level 人 ORGREEE Te Conv2D mized RE -一 一 QQ octoML Transformer Improvements Tensorflow. 5 , Improve scheduling of batch matrix multiplies. 时”Early autotuning templates improve performance by ~20% e What we're working on: This prevents most compute layers from being fused. Reshape
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
共 17 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelGooglePromptEngineeringv7OpenAIpracticalguidetobuildingagents清华大学DeepResearch科研AIintheEnterpriseXDNNTVMNov2019WhereAreWeGoingFacebookAWSMeetupTalkOctoMLOSS11
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩