积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部英语(6)zh(2)日语(1)kor(1)ro(1)中文(简体)(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.030 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 日语
  • kor
  • ro
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    Than Ever? Yes, It Is • AI User + Usage + CapEx Growth = Unprecedented • AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer Usage Rising • 60% 10% 21% 15% 0% Details on Page 293 USA – LLM #1 China USA – LLM #2 AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer Usage Rising Than Ever? Yes, It Is • AI User + Usage + CapEx Growth = Unprecedented • AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer Usage Rising •
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    by 93.3%, and boosts the maximum generation throughput to 5.76 times. We pretrain DeepSeek-V2 on a high-quality and multi-source corpus consisting of 8.1T tokens, and further perform Supervised Fine-Tuning training costs, and efficient inference throughput (Figure 1(b)), simultaneously. We construct a high-quality and multi-source pre-training corpus consisting of 8.1T tokens. Compared with the corpus used supporting efficient inference. For FFNs, we adopt the DeepSeekMoE architecture (Dai et al., 2024), a high-performance MoE architecture that enables training strong models at an economical cost. An illustration
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    large-scale energy storage technologies allow intermittent renewable energy to replace traditional energy. High-performance secondary batteries are one of the most promising candidates for large-scale energy storage lithium-ion batteries (LIBs)have become mainstream energy storage devices with their high output voltage, high energy density, and long cycle life. In order to meet the strong demand for further improving that provide lithium-ion batteries with safe and stable cyclic performance, while providing high capacity and high voltage curves, has sparked in-depth research and discussion. As a promising candidate for
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    up the LLM to predict the right sequence of tokens. Prompt engineering is the process of designing high-quality prompts that guide LLMs to produce accurate outputs. This process involves tinkering to find temperature (T), emphasizing a single, preferred temperature with high certainty. A higher Gemini temperature setting is like a high softmax temperature, making a wider range of temperatures around the irrelevant–the most probable token becomes the next token predicted. If you set temperature extremely high (above 1–generally into the 10s), temperature becomes irrelevant and whatever tokens make it through
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    and automate workflows, agents are able to perform the same workflows on the users’ behalf with a high degree of independence. Agents are systems that independently accomplish tasks on your behalf. A workflow multiple agents 
 (see Orchestration). 10 A practical guide to building agents Configuring instructions High-quality instructions are essential for any LLM-powered app, but especially critical for agents. Clear safeguards Assess the risk of each tool available to your agent by assigning a rating—low, medium, or high—based on factors like read-only vs. write access, reversibility, required account permissions, and
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    Set bold 
 automation goals Most processes involve a lot of rote work, ripe for automation. Aim high. Let’s drill down into each of these, with customer stories as examples. 5 AI in the EnterpriseLesson citations, every time. Faster outcomes Less manual editing or re-checking means your teams can focus on high-value tasks. 15 AI in the EnterpriseLesson 5 Get AI in the hands of experts BBVA takes an expert-led consistent platform that uses natural language as a central interface. Developers now build consistently 
 high-quality apps, faster, without having to get into the source code. Security, guardrails, and routing
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    optimized Open source, automated end-to- end optimization framework for deep learning.TVM Stack High-Level Differentiable IR Tensor Expression and Optimization Search Space LLVM, CUDA, Metal VTA Edge Edge FPGA Cloud FPGA ASIC Optimization AutoTVM Device FleetExisting Deep Learning Frameworks High-level data flow graph Hardware Primitive Tensor operators such as Conv2D eg. cuDNN Offload to Engineering intensiveMachine Learning based Program Optimizer TVM: Learning-based Learning System High-level data flow graph and optimizations Directly generate optimized program for new operator workloads
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    DNN Specific Instruction Set Convolution, Max Pool etc. ˃ Any Network, Any Image Size ˃ High Frequency & High Compute Efficiency ˃ Supported on U200 – 3 Instances U250 – 4 Instances Amazon F1 ˃ ~1536
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    contributors at FB and elsewhere- Performance matters a lot - Heterogenous computing environment - High variety of workloads - Ever-increasing set of primitives (over 500 aten kernels) - Interpreter
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    Models) Host Device High-Level 人 ORGREEE Te Conv2D mized RE -一 一 QQ octoML Transformer Improvements
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModel清华大学DeepResearch科研GooglePromptEngineeringv7OpenAIpracticalguidetobuildingagentsAIintheEnterpriseTVMWhereAreWeGoingXDNNNov2019FacebookAWSMeetupTalkOctoMLOSS11
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩