积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部英语(5)zh(4)日语(1)kor(1)ro(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.012 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 日语
  • kor
  • ro
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 TVM Meetup: Quantization

    reserved. TVM Overview Framework Graph Mxnet TF …. parsers Relay Graph Target-independent Relay passes Target-optimized graph Target-dependent Relay passes Intel x86 ARM CPU Nvidia GPU ARM GPU Dialect QNN passes Target-independent Relay passes Target-optimized Int8 Relay Graph Intel x86 schedule ARM CPU schedule Nvidia GPU schedule ARM GPU schedule Relay Int8 Graph Target-dependent Relay Dialect QNN passes Target-independent Relay passes Target-optimized Int8 Relay Graph Intel x86 schedule ARM CPU schedule Nvidia GPU schedule ARM GPU schedule Relay Int8 Graph Target-dependent Relay
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    Serialized Subgraph Library Relay Runtime (VM, Graph Runtime, Interpreter) Your Dispatcher Target Device General Devices (CPU/GPU/FPGA) Mark supported operators or subgraphs 1. Implement an operator-level WholeGraphAnnotator(ExprMutator): def __init__(self, target): super(WholeGraphAnnotator, self).__init__() self.target = target self.last_call = True def visit_call(self, if isinstance(param, relay.expr.Var): . param = subgraph_begin(param, self.target) params.append(param) new_call = relay.Call(call.op, params, call.attrs)
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 TVM Meetup Nov. 16th - Linaro

    platform support in TVM upstream IPs Target Hardware/Model Options Codegen CPU arm_cpu pixel2 (snapdragon 835), mate10/mate10pro (kirin 970), p20/p20pro (kirin 970) -target=arm64-linux-android -mattr=+neon -mattr=+neon llvm firefly rk3399, rock960, ultra96 -target=aarch64-linux-gnu -mattr=+neon rasp3b (bcm2837) -target=armv7l-linux-gnueabihf -mattr=+neon pynq -target=armv7a-linux-eabi -mattr=+neon GPU mali (midgard)
    0 码力 | 7 页 | 1.23 MB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    Packed Func 0 Packed Func 1 ... Packed Func M Relay VM Executor exe = relay.vm.compile(mod, target) vm = relay.vm.VirtualMachine(exe) vm.init(ctx) vm.invoke("main", *args) export© 2019, Amazon register a strategy? @conv2d_strategy.register("cpu") def conv2d_strategy_cpu(attrs, inputs, out_type, target): strategy = OpStrategy() layout = attrs.data_layout if layout == "NCHW": oc, ic
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    its MoE-related communication frequency is proportional to the number of devices covered by its target experts. Due to the fine-grained expert segmentation in DeepSeekMoE, the number of activated experts DeepSeek-V2, beyond the naive top-K selection of routed experts, we additionally ensure that the target experts of each token will be distributed on at most ? devices. To be specific, for each token, we for carrying RoPE (Su et al., 2024). For YaRN, we set the scale ? to 40, ? to 1, ? to 32, and the target maximum context length to 160K. Under these settings, we can expect the model to respond well for
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 亿联TVM部署

    [ “-shared”, “-fPIC”, “-m32”] b. python tensorflow_blur.py to get the .log c. Use the .log, with target=“llvm –mcpu=i686 –mtriple=i686-linux-gnu” then TVM_NDK_CC=“clang –m32” python tf_blur.py��������
    0 码力 | 6 页 | 1.96 MB | 5 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    400us sampling net runtime Image from LPCNetExit, Pursued By A Bear - 3400us (baseline), 40us (target) - 85x speedup - Uh ohEnter, TVM and model co-design - PyTorch operator overhead makes interpreter
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    access from other languages QQ octoML HTVM Overview *。 Plug directly into TVYM as a backend *,Target C to emit code for microcontrollers that is device- agnostic AuroTYM QQ octoML AutoTVM on HTVM
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    © Copyright 2018 Xilinx Elliott Delaye FPGA CNN Accelerator and TVM© Copyright 2018 Xilinx TVM Target devices and models >> 2 HW Platforms ZCU102 ZCU104 Ultra96 PYNQ Face detection Pose estimation
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    are simple: 01 Set up evals to establish a performance baseline 02 Focus on meeting your accuracy target with the best models available 03 Optimize for cost and latency by replacing larger models with smaller
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
TVMMeetupQuantizationBringYourOwnCodegentoNov16thLinaroDynamicModelinDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguage亿联部署FacebookAWSTalkOctoMLOSS201911XDNNOpenAIpracticalguidebuildingagents
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩