DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language ModelDeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model DeepSeek-AI research@deepseek.com Abstract We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token, and supports a context length of 128K tokens. DeepSeek-V2 innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while0 码力 | 52 页 | 1.23 MB | 1 年前3
Trends Artificial Intelligence
Intelligence,’ a term he coined 1/62: Arthur Samuel, an IBM computer scientist, creates a self-learning program that proves capable of defeating a top USA checkers champion AI ‘Winter1’ (1967-1996) Shakey, the first general- purpose mobile robot that can reason about its own actions 5/97: Deep Blue, IBM’s chess- playing computer, defeats Garry Kasparov, the world chess champion Trending = Unprecedented37 Machine-Learning Model* Trending = In 2015... Industry Surpassed Academia as Data + Compute + Financial Needs Rose *Machine Learning = A subset of AI where machines learn0 码力 | 340 页 | 12.14 MB | 4 月前3
OpenAI - AI in the Enterprisestep. How it started Morgan Stanley’s first eval focused on making their financial advisors more efficient and effective. The premise was simple: If advisors could access information faster and reduce the people. AI amplifies our potential and helps us be more efficient and creative. Elena Alfaro Head of Global AI Adoption Product Note: With deep research, ChatGPT can do work independently. Give it a prompt employee productivity and gives them access to deep, detailed research on any topic in minutes. In an internal evaluation by experts across domains, deep research saved an average of 4 hours per complex0 码力 | 25 页 | 9.48 MB | 5 月前3
Google 《Prompt Engineering v7》the model uses to predict a specific output. You don’t need to be a data scientist or a machine learning engineer – everyone can write a prompt. However, crafting the most effective prompt can be complicated model’s ability to provide meaningful output. You don’t need to be a data scientist or a machine learning engineer – everyone can write a prompt. Prompt Engineering February 2025 7 When you chat with temperature control can be understood in a similar way to the softmax function used in machine learning. A low temperature setting mirrors a low softmax temperature (T), emphasizing a single, preferred0 码力 | 68 页 | 6.50 MB | 6 月前3
TVM: Where Are We GoingTVM: Where are we going Tianqi ChenCurrent Deep Learning Landscape Frameworks and Inference engines DL Compilers Kenrel Libraries Hardware CuDNN NNPack MKL-DNN Hand optimized Open source, automated automated end-to- end optimization framework for deep learning.TVM Stack High-Level Differentiable IR Tensor Expression and Optimization Search Space LLVM, CUDA, Metal VTA Edge FPGA Cloud FPGA FPGA ASIC Optimization AutoTVM Device FleetExisting Deep Learning Frameworks High-level data flow graph Hardware Primitive Tensor operators such as Conv2D eg. cuDNN Offload to heavily optimized0 码力 | 31 页 | 22.64 MB | 5 月前3
Bring Your Own Codegen to TVMNeo, Deep Engine Science Bring Your Own Codegen to TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Considering You... Design and manufacture a deep learning chip0 码力 | 19 页 | 504.69 KB | 5 月前3
TVM Meetup Nov. 16th - Linaro16th, 2019Bringing together the Arm ecosystemLinaro AI Initiative Provide the best-in-class Deep Learning performance by leveraging Neural Network acceleration in IP and SoCs from the Arm ecosystem,0 码力 | 7 页 | 1.23 MB | 5 月前3
XDNN TVM - Nov 2019Compiler Tensor Graph Optimization Framework Tensor Graph to Xilinx Tensor Graph Frontend Deep Learning Frameworks https://github.com/xilinx© Copyright 2018 Xilinx TVM as Unified ML Front End >>0 码力 | 16 页 | 3.35 MB | 5 月前3
DeepSeek图解10页PDF. . . . . . 7 2.3.2 监督微调(Supervised Fine-Tuning, SFT) . . . . . . 7 2.3.3 强化学习(Reinforcement Learning, RL) . . . . . . . 7 3 DeepSeek-R1 精华图解 . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 DeepSeek-R1 据集,让模型在特定任务上优化表现。调整参数,使其更符合人类需求,如 问答、对话生成等任务。 2.3.3 强化学习(Reinforcement Learning, RL) 采用强化学习(RL)方法进行优化,主要通过人类反馈强化学习(RLHF, Reinforcement Learning from Human Feedback): 强化学习(RLHF)优化过程 • 步骤 1:人类标注者提供高质量回答。 • 虽然展现出惊人的推理能力提升,但是也出现了回复时 语言混合,非推理任务回复效果差的问题,为了解决这些问题,DeepSeek 提出通用强化学习训练框架。 如图7所示,通用强化学习(General Reinforcement Learning)基于 SFT- checkpoint,模型进行通用强化学习(RL)训练,优化其在推理任务和其他 教程作者:郭震,工作 8 年目前美国 AI 博士在读,公众号:郭震 AI,欢迎关注获取更多原创教程。资0 码力 | 11 页 | 2.64 MB | 8 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单垂直领域深耕 「核心功能」 多步骤自主研究、端到端强化学习、深度信息整合 实际使用 图源@宝玉 在 ChatGPT 中,选择「message composer」中的 deep research 并输入 查询 可以附加文件或电子表格,为问题添 加上下文。一旦开始运行,侧边栏将 显示所采取的步骤和使用的来源摘要。 1.多步骤 自主研究 2.端到端强化学习 3.深度信息整合 GAIA测试 准确率是此前 OpenAI o1 模型的近三倍 来源:https://openai.com/index/introducing-deep-research 基准测试:精度提升,行业领先 与GPT-4o对比 相比传统GPT-4o模型,Deep Research在多步推理、数据验证、处理 速度和信息追溯性方面表现出明显优势。这些提升有助于模型在复杂 任务中的表现更好,特别是在需要高可靠性和高效执行场景中。 2.关键临床试验数据 3.汇总技术路线对比图谱 4.待突破方向预测 5.符合APA格式的参考文献库 科研场景实测: 获得: 学术研究案例:明确需求,报告生成 通过百度网盘分享的文件:deep Research功能深度研究.docx 链接: https://pan.baidu.com/s/1pyaygXqFXvRe-In7gn5gOA?pwd=fn7s 提取码: fn7s 团队自测案例0 码力 | 85 页 | 8.31 MB | 8 月前3
共 16 条
- 1
- 2













