积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(16)人工智能(16)

语言

全部英语(6)zh(4)中文(简体)(2)fj(1)kor(1)ro(1)中文(简体)(1)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 16 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 中文(简体)
  • fj
  • kor
  • ro
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model DeepSeek-AI research@deepseek.com Abstract We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token, and supports a context length of 128K tokens. DeepSeek-V2 innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    Intelligence,’ a term he coined 1/62: Arthur Samuel, an IBM computer scientist, creates a self-learning program that proves capable of defeating a top USA checkers champion AI ‘Winter1’ (1967-1996) Shakey, the first general- purpose mobile robot that can reason about its own actions 5/97: Deep Blue, IBM’s chess- playing computer, defeats Garry Kasparov, the world chess champion Trending = Unprecedented37 Machine-Learning Model* Trending = In 2015... Industry Surpassed Academia as Data + Compute + Financial Needs Rose *Machine Learning = A subset of AI where machines learn
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    step. How it started Morgan Stanley’s first eval focused on making their financial advisors more efficient and effective. The premise was simple: If advisors could access information faster and reduce the people. AI amplifies our potential and helps us be more efficient and creative. Elena Alfaro Head of Global AI Adoption Product Note: With deep research, ChatGPT can do work independently. Give it a prompt employee productivity and gives them access to deep, detailed research on any topic in minutes. In an internal evaluation by experts across domains, deep research saved an average of 4 hours per complex
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    the model uses to predict a specific output. You don’t need to be a data scientist or a machine learning engineer – everyone can write a prompt. However, crafting the most effective prompt can be complicated model’s ability to provide meaningful output. You don’t need to be a data scientist or a machine learning engineer – everyone can write a prompt. Prompt Engineering February 2025 7 When you chat with temperature control can be understood in a similar way to the softmax function used in machine learning. A low temperature setting mirrors a low softmax temperature (T), emphasizing a single, preferred
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 TVM: Where Are We Going

    TVM: Where are we going Tianqi ChenCurrent Deep Learning Landscape Frameworks and Inference engines DL Compilers Kenrel Libraries Hardware CuDNN NNPack MKL-DNN Hand optimized Open source, automated automated end-to- end optimization framework for deep learning.TVM Stack High-Level Differentiable IR Tensor Expression and Optimization Search Space LLVM, CUDA, Metal VTA Edge FPGA Cloud FPGA FPGA ASIC Optimization AutoTVM Device FleetExisting Deep Learning Frameworks High-level data flow graph Hardware Primitive Tensor operators such as Conv2D eg. cuDNN Offload to heavily optimized
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    Neo, Deep Engine Science Bring Your Own Codegen to TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Considering You... Design and manufacture a deep learning chip
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 TVM Meetup Nov. 16th - Linaro

    16th, 2019Bringing together the Arm ecosystemLinaro AI Initiative Provide the best-in-class Deep Learning performance by leveraging Neural Network acceleration in IP and SoCs from the Arm ecosystem,
    0 码力 | 7 页 | 1.23 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Compiler Tensor Graph Optimization Framework Tensor Graph to Xilinx Tensor Graph Frontend Deep Learning Frameworks https://github.com/xilinx© Copyright 2018 Xilinx TVM as Unified ML Front End >>
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    . . . . . . 7 2.3.2 监督微调(Supervised Fine-Tuning, SFT) . . . . . . 7 2.3.3 强化学习(Reinforcement Learning, RL) . . . . . . . 7 3 DeepSeek-R1 精华图解 . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 DeepSeek-R1 据集,让模型在特定任务上优化表现。调整参数,使其更符合人类需求,如 问答、对话生成等任务。 2.3.3 强化学习(Reinforcement Learning, RL) 采用强化学习(RL)方法进行优化,主要通过人类反馈强化学习(RLHF, Reinforcement Learning from Human Feedback): 强化学习(RLHF)优化过程 • 步骤 1:人类标注者提供高质量回答。 • 虽然展现出惊人的推理能力提升,但是也出现了回复时 语言混合,非推理任务回复效果差的问题,为了解决这些问题,DeepSeek 提出通用强化学习训练框架。 如图7所示,通用强化学习(General Reinforcement Learning)基于 SFT- checkpoint,模型进行通用强化学习(RL)训练,优化其在推理任务和其他 教程作者:郭震,工作 8 年目前美国 AI 博士在读,公众号:郭震 AI,欢迎关注获取更多原创教程。资
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    垂直领域深耕 「核心功能」 多步骤自主研究、端到端强化学习、深度信息整合 实际使用 图源@宝玉 在 ChatGPT 中,选择「message composer」中的 deep research 并输入 查询 可以附加文件或电子表格,为问题添 加上下文。一旦开始运行,侧边栏将 显示所采取的步骤和使用的来源摘要。 1.多步骤 自主研究 2.端到端强化学习 3.深度信息整合 GAIA测试 准确率是此前 OpenAI o1 模型的近三倍 来源:https://openai.com/index/introducing-deep-research 基准测试:精度提升,行业领先 与GPT-4o对比 相比传统GPT-4o模型,Deep Research在多步推理、数据验证、处理 速度和信息追溯性方面表现出明显优势。这些提升有助于模型在复杂 任务中的表现更好,特别是在需要高可靠性和高效执行场景中。 2.关键临床试验数据 3.汇总技术路线对比图谱 4.待突破方向预测 5.符合APA格式的参考文献库 科研场景实测: 获得: 学术研究案例:明确需求,报告生成 通过百度网盘分享的文件:deep Research功能深度研究.docx 链接: https://pan.baidu.com/s/1pyaygXqFXvRe-In7gn5gOA?pwd=fn7s 提取码: fn7s  团队自测案例
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTrendsArtificialIntelligenceOpenAIAIintheEnterpriseGooglePromptEngineeringv7TVMWhereAreWeGoingBringYourOwnCodegentoMeetupNov16thLinaroXDNN2019图解10PDF清华大学DeepResearch科研
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩