积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(7)人工智能(7)

语言

全部英语(4)kor(1)zh(1)中文(简体)(1)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 7 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • kor
  • zh
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    MoE-related communication costs. When expert parallelism is employed, the routed experts will be distributed across multiple devices. For each token, its MoE-related communication frequency is proportional selection of routed experts, we additionally ensure that the target experts of each token will be distributed on at most ? devices. To be specific, for each token, we first select ? devices that have experts model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles, 2023. G. Lai, Q. Xie, H. Liu, Y. Yang, and E. H. Hovy. RACE: large-scale reading comprehension
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    Advances in reasoning, multimodality, and tool use have unlocked a new category of LLM-powered systems known as agents. This guide is designed for product and engineering teams exploring how to build to perform the same workflows on the users’ behalf with a high degree of independence. Agents are systems that independently accomplish tasks on your behalf. A workflow is a sequence of steps that must be and transfer control back to the user. 02 It has access to various tools to interact with external systems—both to gather context and to take actions—and dynamically selects the appropriate tools depending
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    next layers of AI infrastructure: agentic interfaces, enterprise copilots, real-world autonomous systems, and sovereign models. Rapid advances in artificial intelligence, compute infrastructure, and global implications are just starting to emerge. AI agents could reshape how users interact with digital systems – from customer support and onboarding to research, scheduling, and internal operations. Enterprises For AI = Artificial General Intelligence93 Artificial General Intelligence, or AGI, refers to systems capable of performing the full range of human intellectual tasks – reasoning, planning, learning
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    will increasingly do their best work with sophisticated, complex, interconnected workflows and systems. We’re seeing AI deliver significant, measurable improvements on three fronts: 01 Workforce performance our own work. An example: Our support teams were getting bogged down, spending time accessing systems, trying to understand context, craft responses, and take the right actions for customers. So we we built an internal automation platform. It works on top of our existing workflows and systems to automate rote work and accelerate insight and action. Our first use case: working on top of Gmail to
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    snails distributed across a vertical rocky intertidal gradient. Functional Ecology 25:177-185 Bourdeau PE(2011) Constitutive and inducible defensive traits in co-occurring marine snails distributed across
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    Nenana Intel orMicrosof Apple Qualcomm 40+ years of combined experience in computer systems design and machine learning tr tvm 。 @zxnet 和os 全 W Open Source at OctoML ee We
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    Subsystem TPUsTensorization Challenge Compute primitives scalar vector tensor Challenge: Build systems to support emerging tensor instructionsTensorization Challenge C = tvm.compute((m, n), 

    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
共 7 条
  • 1
前往
页
相关搜索词
DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelOpenAIpracticalguidetobuildingagentsTrendsArtificialIntelligenceAIintheEnterprise清华大学DeepResearch科研OctoMLOSS201911TVMWhereAreWeGoing
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩