积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(20)人工智能(20)

语言

全部英语(6)zh(4)中文(简体)(3)中文(简体)(2)[zh](1)fj(1)日语(1)kor(1)ro(1)

格式

全部PDF文档 PDF(20)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 20 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 中文(简体)
  • 中文(简体)
  • [zh]
  • fj
  • 日语
  • kor
  • ro
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    datapoints turned into this beast. As soon as we updated one chart, we often had to update another – a data game of whack-a-mole… a pattern that shows no sign of stopping…and will grow more complex as competition related to the artificial intelligence technology evolution is indeed unprecedented, as supported by the data. This document is filled with user, usage and revenue charts that go up-and-to-the-right… often supported Threats = Rising Competition + Open-Source Momentum + China’s Rise • AI & Physical World Ramps = Fast + Data-Driven • Global Internet User Ramps Powered by AI from Get-Go = Growth We Have Not Seen Likes of
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Data Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.2 Hyper-Parameters MLA and MHA . . . . . . . . . . . . . . . . . . . . . . . . . 31 E Discussion About Pre-Training Data Debiasing 32 F Additional Evaluations on Math and Code 33 G Evaluation Formats 34 3 1. Introduction previous release) (DeepSeek-AI, 2024), this corpus features an extended amount of data, especially Chinese data, and higher data quality. We first pretrain DeepSeek-V2 on the full pre-training corpus. Then
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    employees can focus on 
 the things only people can do. And because AI can process huge amounts of data from many sources, it can create customer experiences that feel more human because they’re more relevant to explain to the candidate why this specific job was recommended to them. Indeed uses the data analysis and natural language capabilities of GPT-4o mini to shape these ‘why’ statements in their emails function. With thousands of suppliers, Lowe’s often has to work with incomplete or inconsistent product data. 13 AI in the EnterpriseThe key is in accurate product descriptions and tagging. But it also requires
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    traditional deterministic and rule-based approaches fall short. Consider the example of payment fraud analysis. A traditional rules engine works like a checklist, flagging transactions based on preset criteria error-prone, 
 for example performing vendor security reviews. 03 Heavy reliance on unstructured data: Scenarios that involve interpreting natural language, 
 extracting meaning from documents, or interacting redundant definitions. Broadly speaking, agents need three types of tools: Type Description Examples Data Enable agents to retrieve context and information necessary for executing the workflow. Query transaction
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    NLP support, with focus on transformers QQ octoML Core Infrastructure Refactors ee New Integer Analysis Infrastructure o_ Supports the ability to handle nested division and modulus o_ Improves the ability implementation httpsJigithub,comlapachelincubator-tvmipull4274 remumn dming data AutoTYM 二 QQ octoML Coming Soon to HTVM (Self-Hosted Models) Host
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    memory load latency 。 storage align to reduce bank conflicts of shared memory 。 Virtual threads for data reuse (on going) Performance on V100 (FP16) 计算平台事业部 COMPUTING PLATFORM 512, 16, 512 512, 32, 512 计算平台事业部 COMPUTING PLATFORM COMPUTING PLATFORM INT8 Inference on PAI- 引FTe[= PAI-Blade Model Analysis Graph optimization Blade Graph Optimizer TensorRT Customized OptimizeT TAO Compiler (XLA)
    0 码力 | 26 页 | 5.82 MB | 5 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    出的逻辑性、知识深度和创新 度 即学即用:复杂任务的提示语链设计实战 需要考虑的因素 任务目标、目标受众、文章类型、字数要求、特殊要求 在分析阶段,首先明确 任务目标和关键问题 通过四个关键步骤:分析(Analysis)、构思(Ideation)、发展(Development) 和评估(Assessment),为提示语链的设计提供系统化的指导。 构思阶段注重创新性思 维,探索多种解决方案 在发展阶段,逐步深化
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    出的逻辑性、知识深度和创新 度 即学即用:复杂任务的提示语链设计实战 需要考虑的因素 任务目标、目标受众、文章类型、字数要求、特殊要求 在分析阶段,首先明确 任务目标和关键问题 通过四个关键步骤:分析(Analysis)、构思(Ideation)、发展(Development) 和评估(Assessment),为提示语链的设计提供系统化的指导。 构思阶段注重创新性思 维,探索多种解决方案 在发展阶段,逐步深化
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 Dynamic Model in TVM

    shapes ○ Dynamic inputs: batch size, image size, sequence length, etc. ○ Output shape of some ops are data dependent: arange, nms, etc. ○ Control flow: concatenate within a while loop Limitation of TVM/graph modes (op_attrs, input_tensors, out_ndims) -> out_shape_tensors ○ Data dependent (op_attrs, input_data, out_ndims) -> out_shape_tensors ○ Data independent (op_attrs, input_shapes, out_ndims) -> out_shape_tensors© out_shape_tensors ○ Data dependent (op_attrs, input_data, out_ndims) -> out_shape_tensors ○ Data independent (op_attrs, input_shapes, out_ndims) -> out_shape_tensors ● Why? ○ Fuse data independent shape
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    as image prompts) is the input the model uses to predict a specific output. You don’t need to be a data scientist or a machine learning engineer – everyone can write a prompt. However, crafting the most complicated. Many aspects of your prompt affect its efficacy: the model you use, the model’s training data, the model configurations, your word-choice, style and tone, structure, and context all matter. Therefore responses, and can hinder the model’s ability to provide meaningful output. You don’t need to be a data scientist or a machine learning engineer – everyone can write a prompt. Prompt Engineering February
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelOpenAIAIintheEnterprisepracticalguidetobuildingagentsOctoMLOSS201911PAITVMMeetupShanghai20191116入门精通20250204清华华大大学清华大学DynamicGooglePromptEngineeringv7
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩