积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(10)人工智能(10)

语言

全部英语(5)zh(2)fj(1)kor(1)ro(1)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 10 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • fj
  • kor
  • ro
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 OctoML OSS 2019 11 8

    contribute to TVML. ee Today we'ltouch on a few of those contribution areas: o Core Infrastructure Improvements to TVM o_uTVM: support for microcontrollers in TVM o_ Virtual Machine and dynamic NNs support High-Level 人 ORGREEE Te Conv2D mized RE -一 一 QQ octoML Transformer Improvements Transformer based models such as BERT have recently become very Popular and require first class 10 Virtual Machine e Many improvements from contributors at UW, AWS, and OctoML. e Initial implementation is quickly moving towards production quality. o _VM compiler VM runtime VM serialization
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    meticulously conduct quality filtering and proportion adjustments. We obtain code preference data based on compiler-feedback, and mathematical preference data based on the ground-truth labels. For reward model training DeepSeek-V2 Chat (RL) on standard benchmarks. Notably, DeepSeek-V2 Chat (SFT) demon- strates substantial improvements in GSM8K, MATH, and HumanEval evaluations compared with its base version. This progress can be
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    semi-borderless capital…all driving massive change. Sport provides a good analogy for AI’s constant improvements. As athletes continue to wow us and break records, their talent is increasingly enhanced by better Breakthroughs in large models, cost-per-token declines, open-source proliferation and chip performance improvements are making new tech advances increasingly more powerful, accessible, and economically viable algorithms, based on how much computing power you'd need to reach top performance without any improvements. Source: Epoch AI (3/24) Impact of Improved Algorithms on AI Model Performance – 2014-2023, per
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    complex, interconnected workflows and systems. We’re seeing AI deliver significant, measurable improvements on three fronts: 01 Workforce performance Helping people deliver higher-quality outputs in shorter deployment to learn quickly from customer use cases and use that information to accelerate product improvements. That means shipping updates regularly, getting feedback, and improving performance and safety through iteration. The earlier you start, the more your organization benefits from compounding improvements. Klarna, a global payments network and shopping platform, introduced a new AI assistant to
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 TVM@Alibaba AI Labs

    Alibaba AL.Labs 阿里巴巴人工智能实验室 PowerVR GPU Alibaba Al.Labs 阿里巴巴人工智能实验室 PowerVR support by TVM NNVM Compiler -Execution graph -Model layers functions Computation Graph Optimizations -Param TvM Tensor Operators & Runtime Property Registr \L Compiler Toolchain 于 TVM TOPI Schedule Primitives & Optimizations Symbols NNVM & Param Frontends
    0 码力 | 12 页 | 1.94 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Flow >> 5 MxNet CPU Layers FPGA Layers Runtime Image Model Weights Calibration Set Quantizer Compiler Tensor Graph Optimization Framework Tensor Graph to Xilinx Tensor Graph Frontend Deep Learning Copyright 2018 Xilinx TVM as Unified ML Front End >> 6 Relay (and NNVM) Graph Parser XIR Compiler Quantizer Partitioner @relay.transform.module_pass(opt_level=4) class AccelModule:© Copyright 2018
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    Services, Inc. or its Affiliates. All rights reserved. Let TVM Be the Compiler of Your Chip Your chip can run any models Your compiler (TVM) supports multiple frontends (e.g., TensorFlow, PyTorch, MXNet)
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    a success message print("Files renamed successfully.") ``` Additionally, there are a few other improvements that can be made to the code: 1. The file extension of the new filenames is not kept. It’s better the file {file}: {e}") # Print a success message print("Files renamed successfully.") ``` These improvements make the code more robust and flexible while also making it easier to read and understand...
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 TVM: Where Are We Going

    al. IEEE Micro 2019. VTA Hardware/Software Interface (ISA) VTA MicroArchitecture VTA Simulator} compiler, driver, hardware design full stack open source Current TVM Stack VTA Runtime & JIT CompilerTSIM:
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    Model Analysis Graph optimization Blade Graph Optimizer TensorRT Customized OptimizeT TAO Compiler (XLA) cuUBLAS/VcuDNNVCUTL, Blade Kernel Lib S, ation 计算平台事业部 COMPUTING PLATFORM Weight Adjustment
    0 码力 | 26 页 | 5.82 MB | 5 月前
    3
共 10 条
  • 1
前往
页
相关搜索词
OctoMLOSS201911DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTrendsArtificialIntelligenceOpenAIAIintheEnterpriseTVMAlibabaLabsXDNNNovBringYourOwnCodegentoGooglePromptEngineeringv7WhereAreWeGoingPAIMeetupShanghai20191116
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩