积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(8)人工智能(8)

语言

全部英语(4)zh(3)中文(简体)(1)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 8 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    undeniable that it’s ‘game on,’ especially with the USA and China and the tech powerhouses charging ahead. In this document, we share data / research / benchmarks from third parties that use methodologies Units ~300MM+ Units ~1B+ Units / Users ~4B+ Units Tens of Billions of Units MM Units in Log Scale Technology Compounding = Numbers Behind The Momentum13 AI Technology Compounding = Numbers gains. But payback periods are often long, especially for vertically-integrated players building ahead of demand. For newer entrants, monetization may lag build-out by quarters or even years. And then
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    1 − ?, 1 + ? � ?? � − ?D?? � ??||??? ? �� , (32) D?? � ??||??? ? � = ??? ? (??|?) ??(??|?) − log ??? ? (??|?) ??(??|?) − 1, (33) where ? and ? are hyper-parameters; and ?? is the advantage, computed language models. arXiv preprint arXiv:2402.03300, 2024. N. Shazeer. Fast transformer decoding: One write-head is all you need. CoRR, abs/1911.02150, 2019. URL http://arxiv.org/abs/1911.02150. N. Shazeer it is correct. Problem: Evaluate $\log_21$. Solution: Table 27 | An example of MATH. 45 PROMPT You are an expert Python programmer, and here is your task: Write a function to find the similar elements
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Dynamic Model in TVM

    out[i] += inputs[j][i] return out Shape function example Use hybrid script to write shape function Input shape tensors Type checking Data independent© 2019, Amazon Web Services, Inc exp_dispatcher) vmc = relay.backend.vm.VMCompiler() with tvm.autotvm.apply_graph_best("resnet50_v1_graph_opt.log"): vm = vmc.compile(mod, "llvm") vm.init(ctx) vm.load_params(params)
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    specific output. You don’t need to be a data scientist or a machine learning engineer – everyone can write a prompt. However, crafting the most effective prompt can be complicated. Many aspects of your prompt a machine learning engineer – everyone can write a prompt. Prompt Engineering February 2025 7 When you chat with the Gemini chatbot,1 you basically write prompts, however this whitepaper focuses on relationship between what’s in the previous tokens and what the LLM has seen during its training. When you write a prompt, you are attempting to set up the LLM to predict the right sequence of tokens. Prompt engineering
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 亿联TVM部署

    platform: Intel/arm CPU, Nividia/arm GPU, VTA…5 �������������� 1. Get a .log file from the autotvm on Ubuntu 2. Use the .log from step1 on Windows to generate the .dll for deployment 3. For application options if options else [ “-shared”, “-fPIC”, “-m32”] b. python tensorflow_blur.py to get the .log c. Use the .log, with target=“llvm –mcpu=i686 –mtriple=i686-linux-gnu” then TVM_NDK_CC=“clang –m32” python
    0 码力 | 6 页 | 1.96 MB | 5 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    rows and columns in this dataset? 描述一下行和列 Can you make the graphs more beautiful? 把图美化一下 Can you write a one sentence recap of this data? 快速回顾一下 Create a visual chart, based on this data. 做一个视觉图表 What’s this dataset? 做一个整体展示 Can you create 10 graphs to present different data? 创作10个不同的图展示数据 Can you write me an article based on this dataset or statistic results? 根据结果写文章 Can you explain this dataset in
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 TVM: Where Are We Going

    IRModule([te_add_one]) print(mod[”te_add_one”].args) Use hybrid script as an alternative text format Directly write pass, manipulate IR structures Accelerate innovation, 
 e.g. use (GA/RL/BayesOpt/your favorite
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    available to your agent by assigning a rating—low, medium, or high—based on factors like read-only vs. write access, reversibility, required account permissions, and financial impact. Use these risk ratings
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
共 8 条
  • 1
前往
页
相关搜索词
TrendsArtificialIntelligenceDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelDynamicinTVMGooglePromptEngineeringv7亿联部署清华大学DeepResearch科研WhereAreWeGoingOpenAIpracticalguidetobuildingagents
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩