积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(7)人工智能(7)

语言

全部英语(3)zh(2)[zh](1)fj(1)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 7 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • [zh]
  • fj
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Bring Your Own Codegen to TVM

    np from tvm import relay 2. Load a pretrained network mod, params = relay.testing.mobilenet.get_workload(batch_size=1) 3. Partition and build the network with an external codegen mod = relay.build_extern(mod ib//graph_annotator.py ● Apply the annotator to a workload: mod, params = relay.testing.mobilenet.get_workload(batch_size=1) mod[‘main’] = MyAnnotator().visit(mod[‘main’]) mod = relay
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 TVM@Alibaba AI Labs

    让 1 splits the workload into thread <| | Apaday+my blocks Bly zx) https://docstvm ai/ PVR TOPI Alibaba ALLabs 阿里巴巴人工智能实验室 Blocking Splits the workload into thread blocks (work groups) and individual threads (work items) Processing Element
    0 码力 | 12 页 | 1.94 MB | 5 月前
    3
  • pdf文档 TVM@AliOS

    45 .31让工 1.31 -35 1 129 中131 124有23152136 2 1.14 am omo oo Convolution Workload Performance AiOS 1驱动万物智能 Alios TVM @ ARM CPU INT8 Depthwise Convolution 。, NHWC layout 。 Using 33. 1.15 116 111 09工08 工区 0.77 0.77 | | | Depthwise Convolution Workload Performance Alios TVM @ ARM CPU INT8 Performance Comparison @ rasp 3b+ AARCH64 aoo0 8.87 sm ao
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    PerformanceNVIDIA GPU Performance = +225x Over Eight Years 106 1 GPT-MoE Inference Workload = A type of workload where a GPT-style model with a Mixture-of-Experts (MoE) architecture is used for inference over eight years while requiring 4x fewer GPUs… $1B Data Center Comparison GPT-MoE Inference Workload1 …Inference token capacity +27,500x over eight years, implying +30,000x higher theoretical
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 TVM: Where Are We Going

    func = remote_mod[“npufunction0"] func(remote_a, remote_b)Virtual Machine: Supporting Dynamic Workload Dynamic shape workloads More runtime objects: Arrays, Tuples, Trees, ADTs Minimum runtime for
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    ticket to a human. Orchestration Agents themselves can serve as tools for other agents—see the Manager Pattern in the Orchestration section. Refund agent, Research agent, Writing agent. 9 A practical requirements, our experience with customers highlights two broadly applicable categories: Manager (agents as tools) A central “manager” agent coordinates multiple specialized agents via tool calls, each handling specializations. Multi-agent systems can be modeled as graphs, with agents represented as nodes. In the manager pattern, edges represent tool calls whereas in the decentralized pattern, edges represent handoffs
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    下和全于由 loss = loss_fn() opt = tf.Adamoptimizer(learning_rate=...) # Choose a 1oss Scale manager which decides how to pick the right loss scale # throughout the training process. 1oss_scale_manger original optimizer in a LossScale0ptimizer . loss_scale_optimizer = LossScaleOptimizer(opt,1oss_scale_manager) # Call minimize() on the loss scale optimizer. train_op = loss_scale_optimizer.minimize(1oss) Loss
    0 码力 | 26 页 | 5.82 MB | 5 月前
    3
共 7 条
  • 1
前往
页
相关搜索词
BringYourOwnCodegentoTVMAlibabaAILabsAliOSTrendsArtificialIntelligenceWhereAreWeGoingOpenAIpracticalguidebuildingagentsPAIMeetupShanghai20191116
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩