积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(7)人工智能(7)

语言

全部英语(5)[zh](1)zh(1)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 7 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • [zh]
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 OpenAI - AI in the Enterprise

    interconnected workflows and systems. We’re seeing AI deliver significant, measurable improvements on three fronts: 01 Workforce performance Helping people deliver higher-quality outputs in shorter 
 time from 
 users and stakeholders. Our approach: iterative development OpenAI is organized around three teams. Our Research Team advances the foundations of AI, developing new models and capabilities on repetitive tasks, they could offer more and better insights to clients.
 They started with three model evals: 01 Language translation Measuring the accuracy and quality of translations produced
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    generative AI (gen AI) model you are using. As a general rule of thumb, you should use at least three to five examples for few-shot prompting. However, you may need to use more examples for more complex easier to analyze how each prompt type influences the language model’s output. Let’s dive into these three different kinds of prompts. System prompting Table 3 contains a system prompt, where I specify additional Step-back prompting encourages LLMs to think critically and apply their knowledge in new and creative ways. It changes the final prompt doing the task by utilizing more knowledge in the LLM’s parameters than
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    citizens via connected devices; ever-growing digital datasets that have been in the making for over three decades; breakthrough large language models (LLMs) that – in effect – found freedom with the November adapt to this evolving journey as knowledge – and its distribution – get leveled up rapidly in new ways. Special thanks to Grant Watson and Keeyan Sanjasaz and BOND colleagues who helped steer ideas and out to ‘organize the world’s information and make it universally accessible and useful.’ Nearly three decades later – after some of the fastest change humankind has seen – a lot of information is indeed
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    to building agents Agent design foundations In its most fundamental form, an agent consists of three core components: 01 Model The LLM powering the agent’s reasoning and decision-making 02 Tools External discoverability, simplify version management, and prevent redundant definitions. Broadly speaking, agents need three types of tools: Type Description Examples Data Enable agents to retrieve context and information guide to building agents Multi-agent systems While multi-agent systems can be designed in numerous ways for specific workflows and requirements, our experience with customers highlights two broadly applicable
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    input of the ?-th token at an attention layer. Standard MHA first produces q?, k?, v? ∈ R?ℎ?ℎ through three matrices ??,? ?,?? ∈ R?ℎ?ℎ×?, respectively: q? = ??h?, (1) k? = ? ?h?, (2) v? = ??h?, (3) 6 Grouped-Query unbal- anced load will diminish computation efficiency. During the training of DeepSeek-V2, we design three kinds of auxiliary losses, for controlling expert-level load balance (LExpBal), device-level load results for 7B dense models with MHA, GQA, and MQA on four hard benchmarks in Table 8. All of these three models are trained on 1.33T tokens, and share the same architecture except for the attention mechanisms
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 TVM Meetup Nov. 16th - Linaro

    ● Public mailing lists and IRC channel ● Internal Jira project restricted to Linaro members ● Three sub-projects: ○ Arm Compute Library ○ Arm NN ○ Android NN Driver ● Arm Compute Library has been
    0 码力 | 7 页 | 1.23 MB | 5 月前
    3
  • pdf文档 TVM@AliOS

    V1 Mobilenet V2 国TVM/MNN @A53 目TVM/MNN @A72 /NiiOS ! 驱动万物智能 PART THREE AliOos TVM @ Hexagon DSsP AiOS 1驱动万物智能 Alios TVM @ Hexagon DSP 人NiOS ! 驱动万物知 Tensorflow deploy
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
共 7 条
  • 1
前往
页
相关搜索词
OpenAIAIintheEnterpriseGooglePromptEngineeringv7TrendsArtificialIntelligencepracticalguidetobuildingagentsDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTVMMeetupNov16thLinaroAliOS
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩