Google 《Prompt Engineering v7》Writer Joey Haymaker Designer Michael Lanning Introduction 6 Prompt engineering 7 LLM output configuration 8 Output length 8 Sampling controls 9 Temperature 9 Top-K and top-P 10 Putting it all together Prompting techniques 13 General prompting / zero shot 13 One-shot & few-shot 15 System, contextual and role prompting 18 System prompting 19 Role prompting 21 Contextual prompting 23 Table of contents AI or by using the API, because by prompting the model directly you will have access to the configuration such as temperature etc. This whitepaper discusses prompt engineering in detail. We will look0 码力 | 68 页 | 6.50 MB | 6 月前3
DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language Modelvectors and the intermediate hidden states of routed experts) to ensure stable training. Under this configuration, DeepSeek-V2 comprises 236B total parameters, of which 21B are activated for each token. Training expert is 1408. Among the routed experts, 6 experts will be activated for each token. Under this configuration, DeepSeek-V2-Lite comprises 15.7B total parameters, of which 2.4B are activated for each token n&=480/30=\boxed{16} \end{align*} Final Answer: The final answer is $16$. I hope it is correct. Problem: If the system of equations \begin{align*} 6x-4y&=a,\\ 6y-9x &=b. \end{align*}has a solution $(x, y)$ where $x$0 码力 | 52 页 | 1.23 MB | 1 年前3
00 Deepseek官方提示词更多 Deepseek 和 AI 资料,欢迎关注微信公众号【星禾光年 AI】,回复【deepseek】获取 1. 万能提示词生成模版:根据用户需求,帮助生成高质量提示词 SYSTEM 你是一位大模型提示词生成专家,请根据用户的需求编写一个智能助手的提示词,来指导大模型进行内容生成, 要求: 1. 以 Markdown 格式输出 2. 贴合用户需求,描述智能助手的定位、能力、知识储备 3 提示词应清晰、精确、易于理解,在保持质量的同时,尽可能简洁 4. 只输出提示词,不要输出多余解释 USER “ 请帮我生成一个 Linux ” 助手 的提示词 2. 文案大纲生成:根据用户提供的主题,来生成文案大纲 SYSTEM 你是一位文本大纲生成专家,擅长根据用户的需求创建一个有条理且易于扩展成完整文章的大纲,你拥有强大的 主题分析能力,能准确提取关键信息和核心要点。具备丰富的文案写作知识储备,熟悉各种文体和题材的文案大 创意性标题:为文章构思一个引人注目的标题,确保它既反映了文章的核心内容又能激发读者的好奇心。 USER “ ” 请帮我生成 中国农业情况 这篇文章的大纲 3. 中英翻译专家:中英文互译,对用户输入内容进行翻译 SYSTEM 你是一个中英文翻译专家,将用户输入的中文翻译成英文,或将用户输入的英文翻译成中文。对于非中文内容, 它将提供中文翻译结果。用户可以向助手发送需要翻译的内容,助手会回答相应的翻译结果,并确保符合中文语0 码力 | 4 页 | 7.93 KB | 8 月前3
Trends Artificial Intelligence
multimodality across audio, visual, & text inputs 7/24: Apple releases Apple Intelligence, an AI system integrated into its devices, for developers 12/24: OpenAI announces o3, its highest-ever Unprecedented41 AI Performance = In 2024… Surpassed Human Levels of Accuracy & Realism, per Stanford HAI AI System Performance on MMLU Benchmark Test – 2019-2024, per Stanford HAI Note: The MMLU (Massive Multitask Human-Generated – 3/25, per Cameron Jones / Benjamin Bergen Date Released 5/24 1/25 2/25 AI system performance consistently improving over time AI Development Trending = Unprecedented43 AI Performance0 码力 | 340 页 | 12.14 MB | 5 月前3
OpenAI 《A practical guide to building agents》complicated instructions or consistently select incorrect tools, you may need to further divide your system and introduce more distinct agents. Practical guidelines for splitting agents include: Complex "Technical Support Agent", "You provide expert assistance with resolving technical issues, system outages, or product troubleshooting." "Sales Assistant Agent" "You help enterprise clients browse Guardrails Well-designed guardrails help you manage data privacy risks (for example, preventing system prompt leaks) or reputational risks (for example, enforcing brand aligned model behavior). You0 码力 | 34 页 | 7.00 MB | 6 月前3
Bring Your Own Codegen to TVMHow Would That Look Like?© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. System Overview Relay IR Graph Annotation with Your Annotator Graph Partitioning Your Codegen LLVM Inc. or its Affiliates. All rights reserved. Partition the Relay IR graph ● No user involvement System Overview Relay IR Graph Annotation with Your Annotator Graph Partitioning Your Codegen LLVM Inc. or its Affiliates. All rights reserved. Partition the Relay IR graph ● No user involvement System Overview Relay IR Graph Annotation with Your Annotator Graph Partitioning Your Codegen LLVM0 码力 | 19 页 | 504.69 KB | 5 月前3
TVM: Where Are We Goingspeedup Engineering intensiveMachine Learning based Program Optimizer TVM: Learning-based Learning System High-level data flow graph and optimizations Directly generate optimized program for new operator Verilog VerilatorToward Unified IR InfraOverview of New IR Infra Single unified module/pass, type system, with function variants supportCompilation Flow under the New Infra IRModule (relay::Function)0 码力 | 31 页 | 22.64 MB | 5 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单force (shell strength)following Burnett and Belk (2018). A universal material+testing machine(MTS System Corporation, Eden Prairie, MIN, USA, Model 661; Fig1,)was used to determine the shell strength. force (shell strength)following Burnett and Belk (2018). A universal material-testing machine (MTS System Corporation, Eden Prairie, MN, USA, Model 661; Fig. 1) was used to determine the shell strength0 码力 | 85 页 | 8.31 MB | 8 月前3
Gluon Deploymentand Shenzhen. 1. Applied Scientist and SDE positions 2. Internship for students interested in ML system. 3. Research & Development 3. Please contact Yida (wangyida [AT] amazon [DOT] com) if interested0 码力 | 8 页 | 16.18 MB | 5 月前3
OctoML OSS 2019 11 8different integer division modes, floor division and truncating division. e Unified Object and Node system for TVM runtime o Lays groundwork forimproved multi-language support for expPosing runtime, and0 码力 | 16 页 | 1.77 MB | 5 月前3
共 15 条
- 1
- 2













