积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(7)人工智能(7)

语言

全部英语(4)中文(简体)(2)zh(1)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 7 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 中文(简体)
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 OpenAI 《A practical guide to building agents》

    A practical 
 guide to 
 building agents Contents What is an agent? 4 When should you build an agent? 5 Agent design foundations 7 Guardrails 24 Conclusion 32 2 Practical guide to building agents Introduction multimodality, and tool use have unlocked a new category of LLM-powered systems known as agents. This guide is designed for product and engineering teams exploring how to build their first agents, distilling and effectively. After reading this guide, you’ll have the foundational knowledge you need to confidently start building your first agent. 3 A practical guide to building agents What is an agent?
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    efficacy: the model you use, the model’s training data, the model configurations, your word-choice, style and tone, structure, and context all matter. Therefore, prompt engineering is an iterative process high-quality prompts that guide LLMs to produce accurate outputs. This process involves tinkering to find the best prompt, optimizing prompt length, and evaluating a prompt’s writing style and structure in relation System, contextual and role prompting System, contextual and role prompting are all techniques used to guide how LLMs generate text, but they focus on different aspects: • System prompting sets the overall
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    Domain expertise Fine-tuned models better understand your industry’s terminology, style, and context. Consistent tone and style For a retailer, that could mean every product description stays true to brand other agents to get things done. We’ll continue to report back from the front lines of AI to help guide your own thinking. Product Note: Operator Operator is an example of OpenAI’s agentic approach
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    its findings, and create insightful multi-page, reports that you can turn into engaging podcast-style conversations… …It’s a step towards more agentic AI that can move beyond simple question- answering Performance = +225x Over Eight Years 106 1 GPT-MoE Inference Workload = A type of workload where a GPT-style model with a Mixture-of-Experts (MoE) architecture is used for inference (i.e., making predictions) than move slowly and miss the moment. We’ll be rolling out a few constructive constraints to help guide this shift…: • …AI use will be part of what we look for in hiring • AI use will be part of what
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    interconnects.ai/p/deepseek-r1-recipe-for-o1 https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of- experts 教程作者:郭震,工作 8 年目前美国 AI 博士在读,公众号:郭震 AI,欢迎关注获取更多原创教程。资 料用心打磨且开源,是为了帮助更多人了解获取
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    methods not delivering generalized performance 2 Why TVM? XTVM for Speech Synthesis - WaveRNN-style model architecture - Autoregressive sampling net running at faster than real-time - Compute split
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    “Context(上 下文)” 相关的 背景信息,比如 你自己或是你希 望它完成的任务 的信息。 "O"代表 “Objective (目标)” 明 确的指示告诉 AI你希望它做什 么。 "S"代表“Style (风格)” 想 要的写作风格, 如严肃的、有趣 的、创新性表达、 学术性…… "T"代表“Tone (语调)” 幽 默的?情绪化? 有威胁性? "A"代表 "Audience", 受众是谁。
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
共 7 条
  • 1
前往
页
相关搜索词
OpenAIpracticalguidetobuildingagentsGooglePromptEngineeringv7AIintheEnterpriseTrendsArtificialIntelligenceDeepSeek图解10PDFFacebookTVMAWSMeetupTalk清华华大大学清华大学第二赋能职场
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩