积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(33)人工智能(33)

语言

全部中文(简体)(13)英语(8)zh(5)中文(简体)(2)[zh](1)fj(1)日语(1)kor(1)ro(1)

格式

全部PDF文档 PDF(32)TXT文档 TXT(1)
 
本次搜索耗时 0.026 秒,为您找到相关结果约 33 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 英语
  • zh
  • 中文(简体)
  • [zh]
  • fj
  • 日语
  • kor
  • ro
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    AI from Get-Go = Growth We Have Not Seen Likes of Before • AI & Work Evolution = Real + Rapid 3 1 2 3 4 5 6 7 8 9-51 52-128 129-152 153-247 248-298 299-307 308-322 # 323-336 OutlineWeekly including China and Russia, as of 5/25. Source: United Nations / International Telecommunications Union (3/25), Sensor Tower (5/25) 0 Years In Share of Total Current Users, % Details on Page 56 AI User In 90% @ Year 3 90% @ Year 23 10/22 4/25 800MM Big Six* USA Technology Company CapEx *Apple, NVIDIA, Microsoft, Alphabet, Amazon (AWS only), & Meta Platforms Source: Capital IQ (3/25), Morgan Stanley
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    如何使用DeepSeek? https://chat.deepseek.com 如何从入门到精通? 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(OpenAI),BERT(Google),主要用于语言生成、语言理解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI 推理过程(若强行拆解步骤,反而可 能限制其能力)。 • 需显式引导推理步骤(如通过CoT提 示),否则可能跳过关键逻辑。 • 依赖提示语补偿能力短板(如要求分 步思考、提供示例)。 关键原则 3 2 1 模型选择 • 优先根据任务类型而非模型热度选择(如数学任务选推理模型,创意任务选通用 模型)。 提示语设计 • 推理模型:简洁指令,聚焦目标,信任其内化能力。(“要什么直接说”)。
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    网页端:https://chat.deepseek.com APP:DeepSeek 如何从入门到精通? 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力 • 例如:GPT-3、GPT-4(OpenAI),BERT(Google),主要用于语言生成、语言理解、文本分类、翻译 等任务。 快思慢想:效能兼顾 全局视野 概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI 推理过程(若强行拆解步骤,反而可 能限制其能力)。 • 需显式引导推理步骤(如通过CoT提 示),否则可能跳过关键逻辑。 • 依赖提示语补偿能力短板(如要求分 步思考、提供示例)。 关键原则 3 2 1 模型选择 • 优先根据任务类型而非模型热度选择(如数学任务选推理模型,创意任务选通用 模型)。 提示语设计 • 推理模型:简洁指令,聚焦目标,信任其内化能力。(“要什么直接说”)。
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    LLaMA 2 70B LLaMA 3 8B LLaMA 3 70B Mistral 7B Mixtral 8x7B Mixtral 8x22B Command R Command R+ Grok-1 DBRX Qwen1.5 32B Qwen1.5 72B LLaMA 1 Family LLaMA 2 Family LLaMA 3 Family Mixtral Family . . 10 2.2.4 Token-Dropping Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Pre-Training 11 3.1 Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pre-Training Data Debiasing 32 F Additional Evaluations on Math and Code 33 G Evaluation Formats 34 3 1. Introduction In the past few years, Large Language Models (LLMs) (Anthropic, 2023; Google, 2023;
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 普通人学AI指南

    . . . . . . . 8 2.2.4 SD (Stable Diffusion) . . . . . . . . . . . . . . . . . . . . 8 2.2.5 DALLE3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.6 Midjourney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.6.4 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 零代码本地部署 AI 后端 13 3.1 大模型 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.3 使用 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 大模型 phi-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.1 Ollama 安装 phi-3 . . . . . . . . . . . .
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    训练和微调,适应特定需求。 Open AI o3 mini  小型化设计:轻量级模型, 适合资源有限的环境。  快速响应:优化推理速度, 适合实时交互场景。  通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 爬虫数据采集 1、阅读网页源代码,提取特定网页内容; 2、撰写python脚本; 3、提取并合并网址; 4、提取网址内容; 5、写入文件。 年春运(2025年1月14日到2月8日) 相关数据(如日期、全社会跨区域人员流动量、铁路客运 量、公路人员流动量、水路客运量、民航客运量等)”完 成数据提取并写入文件“2025春运数据.txt” Open AI o3mini 响应速度快,能够高效提 取所有需求链接,输出完 整可运行python脚本,代 码运行后生成文件,但数 据采集结果为空。 DeepSeek R1 能够提取所有网址并进行 筛选、去重,所撰写代码 目前DeepSeek R1、Open AI o3mini、Kimi k1.5支持联网查询网址,Claude 3.5 sonnet暂不支持;  四个模型均能根据上传的网页代码,对多个网址链接进行筛选、去重,完全提取出符合指令要求的所有网址链接并形成列表;  在复杂爬虫任务上,DeepSeek R1与Open AI o3min生成的代码均能正常执行数据采集任务,o3响应速度更快,R1数据采集结果更加完
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    generation, and code documentation or reasoning. Please feel free to refer to Google’s prompting guides2,3 with simple and effective prompting examples. When prompt engineering, you will start by choosing a language model’s output. Let’s dive into these three different kinds of prompts. System prompting Table 3 contains a system prompt, where I specify additional information on how to return the output. I increased keep evolving, unchecked. It's so disturbing I couldn't watch it. Sentiment: Output NEGATIVE Table 3. An example of system prompting System prompts can be useful for generating output that meets specific
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 TVM Meetup: Quantization

    %2 = cast(%1, dtype="int32") /* ty=Tensor[(2, 5), int32] */; %3 = add(%2, 127 /* ty=int32 */) /* ty=Tensor[(2, 5), int32] */; %4 = clip(%3, a_min=0f, a_max=255f) /* ty=Tensor[(2, 5), int32] */; cast(%4 Tensor[(1, 3, 2, 3), uint8], %weight: Tensor[(3, 3, 2, 2), uint8]) { qnn.conv2d(%data, %weight, … , out_dtype="int32", input_zero_point=1, kernel_zero_point=1)} def @main(%data: Tensor[(1, 3, 2, 3), uint8] uint8], %weight: Tensor[(3, 3, 2, 2), uint8]) -> Tensor[(1, 3, 1, 2), int32] { %0 = nn.conv2d(%data, %weight, … , out_dtype="int32") /* ty=Tensor[(1, 3, 1, 2), int32] */; %1 = cast(%data, dtype="int32") /*
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    采用日式天妇罗手法炸至半透明,形成琥珀色脆网 2.茄泥慕斯 - 融入保加利亚红椒粉与希腊酸奶,制成空气感慕斯 3.香肠脆粒 - 伊比利亚辣肠低温烘烤后粉碎成黄金脆粒 4.薄荷冷萃油 - 液态氮急冻薄荷叶萃取的翡翠色精油 ???️ 味觉风暴: •第1层:青椒脆片释放灯笼椒特有的清甜 •第2层:烟熏红椒粉在慕斯中爆破出暖意 •第3层:辣肠碎粒带来咸鲜微辣的颗粒感 •终章:薄荷冷萃油在舌尖炸开极地般的清凉 ??? 分子料理技法: 反卷造型:将传统卷物内外翻转,脆网外露包裹柔嫩内馅 2.温差游戏:65℃温热慕斯与-196℃冷萃油同盘 3.质构悖论:看似坚硬的脆片入口即碎,柔软慕斯中暗藏爆破脆粒 如何使用DeepSeek解决工作中的问题 “卷不动了?让DeepSeek帮你一键‘躺赢’!” 场景1:1小时内写完一个1万字的项目书 场景:下午3点,你突然接到领导通知:“今晚4点前必须交一份10000字的智能物流园区项目方案书,客户临时提 提 前会议!”你大脑一片空白——手头只有零散的会议记录、几份过时的模板,且对“智能物流”技术细节不熟。电 脑右下角显示时间:3:05 PM,你手心冒汗,疯狂翻找资料,但文档光标始终停留在标题页…… 场景1:1小时内写完一个1万字的项目书 是否可用DeepSeek(深度求索)辅助处理? 可以,但需分阶段“榨干AI效率”,核心策略:框架复制+模块填充+数据嫁接。 分步解决方案: 第一阶段
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 Manus AI:Agent元年开启

    2025!3" Manus AI!Agent"#$ChatGPT%& #$% SAC NO. S0570519080006 | SFC NO. BQZ938 &'( SAC NO. S05701220801381 !"#$%&'() !"#$ • !"#$%&'()*AI+!"#$,-./012334%&'(56789:;<=>?@A BC%&'() • DEFGHI)*DEFGJKH • ‚ƒc„…†Agent…‡ˆAGIO‰Š‹Œ•1 Manus AI!"#$%&'Agent3 Manus AI%&'() • Manus !"#$%&'()*+,-./012345-6708,9):;<=>Manus ?@A+'BCDEFGHIJK,LMN OPQMR<"S>TUVWXY3 less structure more intelligence GZ[5\]^_`abcde_`fgchi_`jEc'k_` LJKŒkF,•mP$ŒŽ4••‘JK’3“”,\M•–P,Manus —˜•™&š›Gœ=> !"#$%Bloomberg*&'()4 Manus AI%*+,- !"#$%Bloomberg*&'()5 Manus AI%./01 • GAIA !"#%‡•ž$% AI Ÿ G¡¢ž£,¤¥-UL6¦§¨©ª«Level 1cLevel 2cLevel 3¬G-•>Manus AI L®‰¯#
    0 码力 | 23 页 | 4.87 MB | 5 月前
    3
共 33 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
TrendsArtificialIntelligenceDeepSeek入门精通20250204清华华大大学清华大学V2StrongEconomicalandEfficientMixtureofExpertsLanguageModel普通通人普通人AI指南DeepResearch科研GooglePromptEngineeringv7TVMMeetupQuantization如何抓住红利ManusAgent元年开启
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩