积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(10)人工智能(10)

语言

全部英语(6)中文(简体)(2)日语(1)ro(1)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 10 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 中文(简体)
  • 日语
  • ro
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    months means that the era of thinking machines is actually now upon us… …We at VAST believe that the path to the greatest potential gain is to simplify and reduce the fundamental challenges that need to companies – with aggressive cash burn – tested this premise hard, built large-scale data-driven network effects based on product excellence / constant improvement, developed technology-driven competitive advantage Each new modality forces models to align meaning across formats rather than optimize for one. The path to this capability unfolded stepwise: OpenAI’s CLIP paired vision and language in 2021; Meta followed
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 Gluon Deployment

    Nano© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Trademark Effects of Vision-specific Optimizations using TVM Speedup 0 1 2 3 SSD_MobileNet1.0 SSD_ResNet50 Yolov3 Nano© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon Trademark Effects of Convolution operators using TVM AWS DeepLens Acer aiSage NVIDIA Jetson Nano Speedup 0
    0 码力 | 8 页 | 16.18 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    model becomes overly deterministic, sticking rigidly to the highest probability path, which can lead to a loop if that path revisits previously generated text. Conversely, at high temperatures, the model's from the user folder_name = input("Enter the folder name: ") # Check if the folder exists if not os.path.isdir(folder_name): print("Folder does not exist.") exit(1) Continues next page... Prompt Engineering new_file_name = f"draft_{file}" # Move the file to the new name shutil.move(os.path.join(folder_name, file), os.path.join(folder_name, new_file_name)) # Print a success message print("Files renamed
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    extern(outputs[0].shape, inputs, lambda ins, outs: tvm.call_packed('tvm.accel.accel_fused', attrs['path'], attrs['output_layout'], attrs['model_name'], outs[0], *ins ), name=name) return out >> 10© … @tvm.register_func("tvm.accel.accel_fused") def accel_fused(graph_path, output_layout, out, *ins ): path = c_char_p(graph_path.value).value layout = c_char_p(output_layout.value).value … >> 12©
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    ● Implement a Python template to indicate if an op can be supported by your codegen ● Template path: python/tvm/relay/op/contrib/ /extern_op.py ● Boolean functions in the template Option 2: Graph-Level Annotation ● Implement a Relay IR visitor to annotate a subgraph ● Module path: python/tvm/relay/op/contrib//graph_annotator.py ● Apply the annotator to a workload: codegen class to accept subgraphs and build binary/library/engine for runtime dispatching ● Codegen path: src/relay/backend/contrib//codegen.cc ● Flow overview data weight1 weight3
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    01-of-00004.gguf DeepSeek-R1-UD-IQ1_S.gguf curl -fsSL https://ollama.com/install.sh | sh FROM /path/to/DeepSeek-R1-UD-IQ1_M.gguf PARAMETER num_gpu 28 # 每块RTX 4090加载7层(共4卡) PARAMETER num_ctx 2048
    0 码力 | 7 页 | 932.77 KB | 8 月前
    3
  • pdf文档 TVM Meetup: Quantization

    PreQuantized hosted models • MXNet Pre-quantized Models • Tested internally with MxNet + MKLDNN path • Will open RFC in a month© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    human-in-the-loop intervention, helping ensure agents operate safely and predictably in production. The path to successful deployment isn’t all-or-nothing. Start small, validate with real users, and grow capabilities
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 普通人学AI指南

    上面的界面,找到 Volumes 输 入框,下图 35中 4 处,填入刚才的知识库路径,我的路径如下:/Users/zhen- guo/Documents/words 随后在 Container path 输入框中填入/var/lib/postgresql/data,下图 35中 5 处,这是固定不变的,直接复制过去! 31 Figure 35: 配置 MaxKB 续 最后点击 Run 按钮,这样一个
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    mentioned in the paper. DeepSeek believes that innovation, novelty, and curiosity are essential in the path to AGI. 28 B. DeepSeek-V2-Lite: A 16B Model Equipped with MLA and DeepSeekMoE B.1. Model Description
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
共 10 条
  • 1
前往
页
相关搜索词
TrendsArtificialIntelligenceGluonDeploymentGooglePromptEngineeringv7XDNNTVMNov2019BringYourOwnCodegentoDeepseekR1本地部署完全手册MeetupQuantizationOpenAIpracticalguidebuildingagents普通通人普通人AI指南DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModel
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩