积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(13)人工智能(13)

语言

全部英语(6)zh(3)[zh](1)日语(1)kor(1)中文(简体)(1)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 13 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • [zh]
  • 日语
  • kor
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    21B activated parameters, DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models. The model checkpoints are available at h t t p s : / / g i t h u b . c o m / d e e (Tokens/Sec) (b) Figure 1 | (a) MMLU accuracy vs. activated parameters, among different open-source models. (b) Training costs and inference efficiency of DeepSeek 67B (Dense) and DeepSeek-V2 adoption and utilization of LLMs. In order to tackle this problem, we introduce DeepSeek-V2, a strong open-source Mixture-of-Experts (MoE) language model, characterized by economical training and efficient
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    • AI Usage + Cost + Loss Growth = Unprecedented • AI Monetization Threats = Rising Competition + Open-Source Momentum + China’s Rise • AI & Physical World Ramps = Fast + Data-Driven • Global Internet on Page 975 …Charts Paint Thousands of Words… AI Monetization Threats = Rising Competition + Open-Source Momentum + China’s Rise 5 Leading USA LLMs vs. China LLM Desktop User Share Note: Data Electric Power Computer Memory AI Inference AI Monetization Threats = Rising Competition + Open-Source Momentum + China’s Rise 5.1 China vs. USA vs. Rest of World Industrial Robots Installed
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    and reviewing code 48 What about multimodal prompting? 54 Best Practices 54 Provide examples 54 Design with simplicity 55 Be specific about the output 56 Use Instructions over Constraints 56 Control specific model, regardless of whether you use Gemini language models in Vertex AI, GPT, Claude, or an open source model like Gemma or LLaMA. Besides the prompt, you will also need to tinker with the various of description of what this article should contain. Output 1. **The Evolution of Arcade Cabinet Design:** This article would explore the evolution of arcade cabinet designs, from the early wood and
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 TVM: Where Are We Going

    Inference engines DL Compilers Kenrel Libraries Hardware CuDNN NNPack MKL-DNN Hand optimized Open source, automated end-to- end optimization framework for deep learning.TVM Stack High-Level tvm.sum(A[k, y] * B[k], axis=k)) HW Interface Specification by Tensor Expression TensorizationVTA: Open & Flexible Deep Learning Accelerator • Runtime JIT compile accelerator micro code • Support heterogenous hardware design full stack open source Current TVM Stack VTA Runtime & JIT CompilerTSIM: Support for Future Hardware Current TVM Stack New NPU Runtime TSIM Driver TSIM Binary New Hardware Design in Verilog
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 TVM Meetup: Quantization

    2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Outline • QNN Dialect • Design • Operators • Results on Intel Cascade Lake© 2019, Amazon Web Services, Inc. or its Affiliates extent)© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. QNN Dialect • Design operators that satisfy many framework operators • qnn.quantize, qnn.dequantize, qnn.requantize hosted models • MXNet Pre-quantized Models • Tested internally with MxNet + MKLDNN path • Will open RFC in a month© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Evaluation
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    Q OctoML Open Source at O〇ctoML TVM Meetup 11/8/2019 Jared Roesch OctoML is a new company building DL deployment solutions using the Apache (incubating) TVM project. A goal is to nurture the TVM community combined experience in computer systems design and machine learning tr tvm 。 @zxnet 和os 全 W Open Source at OctoML ee We are big believers in the power of open source o 5S$ponsoring multiple employees
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    guide to 
 building agents Contents What is an agent? 4 When should you build an agent? 5 Agent design foundations 7 Guardrails 24 Conclusion 32 2 Practical guide to building agents Introduction Large Otherwise, a deterministic solution may suffice. 6 A practical guide to building agents Agent design foundations In its most fundamental form, an agent consists of three core components: 01 Model The
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    Pursued By A Bear - 3400us (baseline), 40us (target) - 85x speedup - Uh ohEnter, TVM and model co-design - PyTorch operator overhead makes interpreter infeasible - Reduce FLOPs with block-sparsified
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Considering You... Design and manufacture a deep learning chip which achieves amazing performance on widely-used operators
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。  长文本处理:擅长处理长文本 和复杂文档,适合专业场景。  定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini  小型化设计:轻量级模型, 适合资源有限的环境。  快速响应:优化推理速度, 适合实时交互场景。  通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 年春运(2025年1月14日到2月8日) 相关数据(如日期、全社会跨区域人员流动量、铁路客运 量、公路人员流动量、水路客运量、民航客运量等)”完 成数据提取并写入文件“2025春运数据.txt” Open AI o3mini 响应速度快,能够高效提 取所有需求链接,输出完 整可运行python脚本,代 码运行后生成文件,但数 据采集结果为空。 DeepSeek R1 能够提取所有网址并进行 。 爬虫数据采集  目前DeepSeek R1、Open AI o3mini、Kimi k1.5支持联网查询网址,Claude 3.5 sonnet暂不支持;  四个模型均能根据上传的网页代码,对多个网址链接进行筛选、去重,完全提取出符合指令要求的所有网址链接并形成列表;  在复杂爬虫任务上,DeepSeek R1与Open AI o3min生成的代码均能正常执行数据采集任务,o3响应速度更快,R1数据采集结果更加完
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTrendsArtificialIntelligenceGooglePromptEngineeringv7TVMWhereAreWeGoingMeetupQuantizationOctoMLOSS201911OpenAIpracticalguidetobuildingagentsFacebookAWSTalkBringYourOwnCodegen清华大学DeepResearch科研
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩