积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(10)人工智能(10)

语言

全部英语(6)zh(2)ro(1)中文(简体)(1)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 10 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • ro
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    USA-Based LLM: Total Current Users Outside North America Note: LLM data is for monthly active mobile app users. App not available in select countries, including China and Russia, as of 5/25. Source: included in East Asia figures. Data for standalone app only. Source: Sensor Tower (5/25) 5/23 4/25 Mobile App Monthly Active Users, MM Details on Page 315 AI & Work Evolution = Real + Rapid 8 USA → More Note: PC units as of 2000. Desktop internet users as of 2005, installed base as of 2010. Mobile internet units are the installed based of smartphones & tablets in 2020. Cloud & data center capex
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    fine-tune your models 13 Get AI in the hands of experts 16 Unblock your developers 18 Set bold automation goals 21 Conclusion 22 More resources 24 2 AI in the EnterpriseA new way 
 to work As an AI development lifecycle can multiply 
 AI dividends. 07 Set bold 
 automation goals Most processes involve a lot of rote work, ripe for automation. Aim high. Let’s drill down into each of these, with customer dramatically reduced search time; and advisors spend more time on client relationships, thanks to task automation and faster insights. The feedback from advisors has been overwhelmingly positive. They’re more
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    requires rethinking how your systems make decisions and handle complexity. Unlike conventional automation, agents are uniquely suited to workflows where traditional deterministic and rule-based approaches As you evaluate where agents can add value, prioritize workflows that have previously resisted automation, especially where traditional methods encounter friction: 01 Complex 
 decision-making: Workflows payments. 31 A practical guide to building agents Conclusion Agents mark a new era in workflow automation, where systems can reason through ambiguity, take action across tools, and handle multi-step tasks
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 TVM: Where Are We Going

    generate optimized program for new operator workloads and hardware Hardware FrameworksWhy Automation is the Future Clear winner on emerging models in product Competitive on benchmarking type model enables other optimizations: fusion, layout, parallelization Portable performance across devicesWhy Automation is the Future 1 1 1 1 0.76 0.83 1.16 1.44 Large MatMul BatchConv Small MatMul BatchMatMul
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    hand-written, highly optimized baselines (https://github.com/mozilla/LPCNet) by ~40% - Bonus: Real-time on mobile CPUs for free 6 TVM specifics X78Structured and Unstructured Sparsity - Lots of 'free' wins
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    February 2025 14 Let’s use Vertex AI Studio (for Language) in Vertex AI,6 which provides a playground to test prompts. In Table 1, you will see an example zero-shot prompt to classify movie reviews. The table prompts, which also includes writing prompts for returning code. Let’s go to the Vertex AI Studio and test these prompts to look at some coding examples. Prompts for writing code Gemini can also be a developer it’s essential to read and test your code first. The moment we are all waiting for, does it really work? Prompt Engineering February 2025 44 Let’s try it first with a test folder with only a few files
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 普通人学AI指南

    非常简单,基本都是下一步。注意在安装过程中,我们需要确 保”Use WSL 2 instead of Hyper-V (recommended)” 这一功能被启用。 docker 有 UI 界面,如图 22所示: 21 Figure 22: docker 在 mac 下的 UI 界面 如何验证 docker 是否安装成功,只需要运行下面命令: docker run hello-world 如果返回消息中带有:成功,表明安装成功。
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    AGIEval, CLUEWSC, CMRC, and CMath. In addition, we perform language- modeling-based evaluation for Pile-test and use Bits-Per-Byte (BPB) as the metric to guarantee fair comparison among models with different MoE # Activated Params - 67B 72B 39B 70B 21B # Total Params - 67B 72B 141B 70B 236B English Pile-test (BPB) - 0.642 0.637 0.623 0.602 0.606 BBH (EM) 3-shot 68.7 59.9 78.9 81.0 78.9 MMLU (Acc.) 5-shot W. Liu, S. Dong, and B. Wang. Cmath: Can your language model pass chinese elementary school math test?, 2023. L. Xu, H. Hu, X. Zhang, L. Li, C. Cao, Y. Li, Y. Xu, K. Sun, D. Yu, C. Yu, Y. Tian, Q. Dong
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Copyright 2018 Xilinx Quantization Tool – vai_q ˃ 4 commands in vai_q quantize ‒ Quantize network test ‒ Test network accuracy finetune ‒ Finetune quantized network deploy ‒ Generate model for DPU ˃ increase accuracy decent_q Pre-trained model (fp32) Quantized model (Int16/Int8/...) quantize test finetune needs to increase accuracy deploy Y N Model for DPU Origin training data Calibration
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 Deploy VTA on Intel FPGA

    command Step 10: Get the generated .sof file programmed into hardware Step 11: Evaluate the unit test script test_vta_insn.py with python3. Hooray!©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED ACCELERATED
    0 码力 | 12 页 | 1.35 MB | 5 月前
    3
共 10 条
  • 1
前往
页
相关搜索词
TrendsArtificialIntelligenceOpenAIAIintheEnterprisepracticalguidetobuildingagentsTVMWhereAreWeGoingFacebookAWSMeetupTalkGooglePromptEngineeringv7普通通人普通人指南DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelXDNNNov2019DeployVTAonIntelFPGA
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩