积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(26)人工智能(26)

语言

全部英语(8)中文(简体)(8)zh(4)中文(简体)(2)[zh](1)fj(1)日语(1)ro(1)

格式

全部PDF文档 PDF(26)
 
本次搜索耗时 0.035 秒,为您找到相关结果约 26 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 中文(简体)
  • zh
  • 中文(简体)
  • [zh]
  • fj
  • 日语
  • ro
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 TVM: Where Are We Going

    ASIC Optimization AutoTVM Device FleetExisting Deep Learning Frameworks High-level data flow graph Hardware Primitive Tensor operators such as Conv2D eg. cuDNN Offload to heavily optimized intensiveMachine Learning based Program Optimizer TVM: Learning-based Learning System High-level data flow graph and optimizations Directly generate optimized program for new operator workloads and hardware SubclassesUnified Runtime Benefit mod.export_library("mylib.so") Unified library packaging Free API (Py/Java/Go) lib = tvm.module.load("mylib.so") func = lib["npufunction0"] func(a, b) Automatic
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    dependent: arange, nms, etc. ○ Control flow: concatenate within a while loop Limitation of TVM/graph runtime ● Cannot compile and run dynamic models© 2019, Amazon Web Services, Inc. or its Affiliates new runtime for Relay ● Dynamic codegen (WIP) ○ Kernel dispatch for a single op ○ Graph dispatch for a (sub-)graph In collaboration with Jared Roesch, Zhi Chen, Wei Chen© 2019, Amazon Web Services, implement© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Dispatch a Whole Graph Resnet Data -> (Any, 3, 224, 224) Dispatch Tree Resnet_copy0 Resnet_copy1 ... 1 <= bs < 17 17
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    TensorCore 。Work at the scheduling level: the less the better 。 The requirement of familiarity with WMMA API “Unified matmul schedule for GPU 。 Maintainability & Common Optimization Sharing 。 Search across PLATFORM COMPUTING PLATFORM INT8 Inference on PAI- 引FTe[= PAI-Blade Model Analysis Graph optimization Blade Graph Optimizer TensorRT Customized OptimizeT TAO Compiler (XLA) cuUBLAS/VcuDNNVCUTL, Blade
    0 码力 | 26 页 | 5.82 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    For example, a step might instruct the agent to ask the user for their order number or to call an API to retrieve account details. Being explicit about the action (and even the wording of a user-facing express workflow logic using familiar programming constructs without needing to 
 pre-define the entire graph upfront, enabling more dynamic and adaptable agent orchestration. 20 A practical guide to building we combine LLM-based guardrails, rules-based guardrails such as regex, and the OpenAI moderation API to vet our user inputs. Respond ‘we cannot process your message. Try again!’ Continue with function
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    Year 3 90% @ Year 23 10/22 4/25 800MM Big Six* USA Technology Company CapEx *Apple, NVIDIA, Microsoft, Alphabet, Amazon (AWS only), & Meta Platforms Source: Capital IQ (3/25), Morgan Stanley 2014 2024 applied effectively, even if it hasn’t yet generated revenue. Source: Microsoft, ‘Governing AI: A Blueprint for the Future,’ Microsoft Report (5/23); Data via Maddison Project & Our World in Data Technology installed based of smartphones & tablets in 2020. Cloud & data center capex includes Google, Amazon, Microsoft, Meta, Alibaba, Apple, IBM, Oracle, Tencent, & Baidu for ten years ending 2022. ‘Tens of billions
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    DeepSeek的三种模式 平台 地址 版本 备注 英伟达NIM微服务 https://build.nvidia.com/d eepseek-ai/deepseek-r1 671B(全量模型) 网页版直接使用,支持API调用,注册送1000点数,免费体验。 微软Azure https://ai.azure.com 671B(全量模型) 需注册微软账户并创建订阅,免费部署,支持参数调节。 亚马逊AWS https://aws 收集详细的流程或架构描述。 根据描述分析并设计图表结构。 生成并输出符合Mermaid语法的代码。 校验代码,确保没有语法错误。 将最终代码提供给用户。 输出格式: Mermaid图表代码。 示例: graph TD; A[开始] --> B[做事情]; B --> C[结束]; 如何使用DeepSeek制作可视化图表? 角色: PPT大纲辅助生成 功能: 根据用户提供的主题、
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    何静 能做什么? 要怎么做? 效果如何? 一 能做什么? 数据挖掘 数据分析 数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 heatmap using this data? 创建一个热力图 Can you segment this data and create a table? 切分数据 Can you create a graph using this data? 制作一个图 Can you create a world cloud? 做一个词云 Can you create a chart using this data 发 者能够负担得起高性能 AI 模型的训练和使用。  调用成本:DeepSeek R1 的 API 服务定价为每百万输入 tokens 1 元(缓存命中)/4 元(缓存未命中),每百万输出 tokens 16 元, 输出 API 价格仅为 OpenAI o1 的 3%。这种低廉的 API 价格进一 步降低了使用门槛。 DeepSeek R1 采用 MIT 许可协议开源发布,允许全球的研究者和开
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    System Overview Relay IR Graph Annotation with Your Annotator Graph Partitioning Your Codegen LLVM, CUDA, Metal, VTA Serialized Subgraph Library Relay Runtime (VM, Graph Runtime, Interpreter) Mark supported operators or subgraphs 1. Implement an operator-level annotator, OR 2. Implement a graph-level annotator© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Option 1: rights reserved. Option 2: Graph-Level Annotation ● Implement a Relay IR visitor to annotate a subgraph ● Module path: python/tvm/relay/op/contrib//graph_annotator.py ● Apply the annotator
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 TVM Meetup: Quantization

    ingests a FP32 graph and a small dataset • Finds suitable quantization scale • Produces a quantized graph • Compiling Pre-quantized models – QNN Dialect • TVM ingests a pre-quantized graph in TFLite or Affiliates. All rights reserved. TVM Overview Framework Graph Mxnet TF …. parsers Relay Graph Target-independent Relay passes Target-optimized graph Target-dependent Relay passes Intel x86 ARM CPU targets AutoTVM – Tuning the kernels Optimized Binary Codegen – LLVM, Cuda, C, … Framework Parsers Graph level optimizations Tensor-level optimizations Machine code generation© 2019, Amazon Web Services
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Runtime Image Model Weights Calibration Set Quantizer Compiler Tensor Graph Optimization Framework Tensor Graph to Xilinx Tensor Graph Frontend Deep Learning Frameworks https://github.com/xilinx© Copyright Copyright 2018 Xilinx TVM as Unified ML Front End >> 6 Relay (and NNVM) Graph Parser XIR Compiler Quantizer Partitioner @relay.transform.module_pass(opt_level=4) class AccelModule:© Copyright 2018 supported/not supported, pattern matching graph colorization - Choices how to partition especially for multi-branch networks (i.e. YOLOv3, SSD)© Copyright 2018 Xilinx TVM Graph Partitioning/Fusion >> 8 Subgraph
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
共 26 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
TVMWhereAreWeGoingDynamicModelinPAIMeetupShanghai20191116OpenAIpracticalguidetobuildingagentsTrendsArtificialIntelligence清华华大大学清华大学第二DeepSeek赋能职场DeepResearch科研BringYourOwnCodegenQuantizationXDNNNov2019
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩