积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部英语(6)zh(2)中文(简体)(2)kor(1)ro(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 中文(简体)
  • kor
  • ro
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    Richard Hirsh; John McCallum; OpenAI Details on Page 138 0 Years 72 Years Electric Power Computer Memory AI Inference AI Monetization Threats = Rising Competition + Open-Source Momentum + China’s Rise its 365 product suite 3/23: Anthropic releases Claude, its AI assistant focused on safety & inter- pretability 3/24: USA Department of Homeland Security unveils its AI Roadmap 11/23: 28 countries, including USA, EU members & China, sign Bletchley Declaration on AI Safety 4/24: Meta Platforms releases its open- source** Llama 3 model with 70B parameters
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    conversational sessions, which encompass various domains such as math, code, writing, reasoning, safety, and more, to perform Supervised Fine-Tuning (SFT) for DeepSeek-V2 Chat (SFT). Finally, we follow the KV joint compression in MLA reduces the KV cache. Moreover, in order to reduce the activation memory during training, we also perform 7 low-rank compression for the queries, even if it cannot reduce relatively few activated parameters, and a portion of the operators are recomputed to save acti- vation memory, it can be trained without the necessity of tensor parallelism, thereby decreasing the communication
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    improvements. That means shipping updates regularly, getting feedback, and improving performance and safety at every step. The result: users access new advancements in AI early and often—and your feedback AI in the EnterpriseLesson 1 Start with evals How Morgan Stanley iterated to ensure quality and safety As a global leader in financial services, Morgan Stanley is a relationship business. Not surprisingly theme: AI deployment benefits from an open, experimental mindset, backed by rigorous evaluations, and safety guardrails. The companies seeing success aren’t rushing to inject AI models into every workflow
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    tall is the Empire State Building?” is an 
 off-topic user input and would be flagged as irrelevant. Safety classifier Detects unsafe inputs (jailbreaks or prompt injections) 
 that attempt to exploit system vulnerabilities. We’ve found the following heuristic to be effective: 01 Focus on data privacy and content safety 02 Add new guardrails based on real-world edge cases and failures you encounter 03 Optimize for both such as jailbreak prevention, relevance validation, keyword filtering, blocklist enforcement, or safety classification. For example, the agent above processes a math question input optimistically until
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    model to create a structure and limit hallucinations. System prompts can also be really useful for safety and toxicity. To control the output, simply add an additional line to your prompt like: ‘You should instructions, clearly stating what you want the model to do and only use constraints when necessary for safety, clarity or specific requirements. Experiment and iterate to test different combinations of instructions
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    Tuning),如下图11所示。通用强化学习训练过 程后,使得 R1 不仅在推理任务中表现卓越,同时在非推理任务中也表现出 色。但由于其能力拓展至非推理类应用,因此在这些应用中引入了帮助性 (helpfulness)和安全性(safety)奖励模型(类似于 Llama 模型),以优化 与这些应用相关的提示处理能力。 DeepSeek-R1 是训练流程的终点,结合了 R1-Zero 的推理能力和通用强化 学习的任务适应能力,成为一个兼具强推理和通用能力的高效
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    part of the systeml e Haichen and | will discuss more details at TVMConf. Oo oo QQ octoML 11 VM Memory Planning e Recently shipped a first version fn enain(0) -> Tensor[tk,),f32] { ofdynamicmemory Planmng Let t2 3 memory planning,, storage Let s = alLLoc_storage(40,64,f32) ; Tet outl = attoc_tensor(s,(19,),f32); coalescing, memory re-use for invoke_ l,t2),(outl,))3 Out1l loops, and offloading dynamic } allocation to devices. QQ octoML VM Memory Abstractions Old New t1: Tensor t1: Tensor
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 Deploy VTA on Intel FPGA

    VTA ON INTEL FPGA©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 5 Software - CMA Contiguous Memory Allocation – Linux Kernel DEPLOY VTA ON INTEL FPGA https://pynq.readthedocs.io/en/v2.0/pynq_package/pynq 08.02_pr.tar.gz©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 6 Software - CMA Contiguous Memory Allocation – Linux Kernel Module DEPLOY VTA ON INTEL FPGA Setup Environment Variables Navigate INTERNATIONAL INDUSTRIES, INCORPORATED 7 Software - Driver Cyclone V & Arria V SoC HPS Physical Memory Map DEPLOY VTA ON INTEL FPGA©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 8 Hardware Configure
    0 码力 | 12 页 | 1.35 MB | 5 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    TensorCore Intrinsics 。Authored by @Hzfengsy 。 Intrinsics: tvm_load_matrix_sync tvm_mma_sync … “New Memory Scopes: wmma.matrix_a/b, accumulator 。Tensorization on warp level schedule Motivation load/store for higher bandwidth utilization 。Double buffer to hide memory load latency 。 storage align to reduce bank conflicts of shared memory 。 Virtual threads for data reuse (on going) Performance on V100
    0 码力 | 26 页 | 5.82 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    FABRIC IMG RD SCHEDULER WEIGHTS RD SCHEDULER PE Array PE PE PE PE DISPATCHER ... EXTERNAL MEMORY INSTR FETCHER DECODER REG MAP WB WR SCHEDULER CTRL SIGNALS MISC CALC AVG POOL MAX POOL aster/examples/deployment_modes/mp_classify.py) Streamlined multi-process pipeline using shared memory Usually need >4 Pre-Process cores running to keep up with FPGA ˃ TVM pipeline needed. CPU/FPGA
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelOpenAIAIintheEnterprisepracticalguidetobuildingagentsGooglePromptEngineeringv7图解10PDFOctoMLOSS201911DeployVTAonIntelFPGAPAITVMMeetupShanghai20191116XDNNNov
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩