积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(9)人工智能(9)

语言

全部英语(5)zh(3)中文(简体)(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 9 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    Device-Limited Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 Auxiliary Loss for Load Balance . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.4 Token-Dropping Strategy . . . . during training, we also devise supplementary mechanisms to control communication overheads and ensure load balance. By combining these two techniques, DeepSeek-V2 features strong performance (Figure 1(a)) routing. 2.2.3. Auxiliary Loss for Load Balance We take the load balance into consideration for automatically learned routing strategies. Firstly, unbalanced load will raise the risk of routing collapse
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    wmma::fragment a[1] a=Afindex] wmma::load_matrix_sync(a, &A[index], stride) c=float(a)*float(blj+c wmma::mma_sync(c ab, c) C[index] = c 1 。TVM TensorCore Intrinsics 。Authored by @Hzfengsy 。 Intrinsics: tvm_load_matrix_sync tvm_mma_sync … “New Memory Scopes: wmma.matrix_a/b, accumulator 。Tensorization on warp non-TensorCore CUDA codegen 。Auto tune tiling sizes 。 Vectorized load/store for higher bandwidth utilization 。Double buffer to hide memory load latency 。 storage align to reduce bank conflicts of shared memory
    0 码力 | 26 页 | 5.82 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    = tvm.module.load("mylib.so") func = lib["npufunction0"] func(a, b) Automatic RPC Support remote = tvm.rpc.connect(board_url, port) remote.upload("mylib.so") remote_mod = remote.load_module(“mylib
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    showcase: Intel MKL-DNN (DNNL) library 1. Import packages import numpy as np from tvm import relay 2. Load a pretrained network mod, params = relay.testing.mobilenet.get_workload(batch_size=1) 3. Partition reinterpret_cast(arg->data); } (*func_s)(packed_args, out); *rv = out; });}} Load the built shared library Get the corresponding subgraph function Execute the subgraph© 2019, Amazon
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    alloc_storage 1 1 64 bool alloc_tensor $2 $1 [] uint1 invoke_packed PackedFunc[0] (in: $0, out: $2) load_consti $3 1 if $2 $3 1 2 goto 9 alloc_storage 4 4 64 int32 alloc_tensor $5 $4 [] int32 invoke_packed 0_v1_graph_opt.log"): vm = vmc.compile(mod, "llvm") vm.init(ctx) vm.load_params(params) data = np.random.uniform(size=(1, 3, 224, 224)).astype("float32") out = vm.run(data)
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    children have a famous dad that performs in the band Metallica. Python from langchain.agents import load_tools from langchain.agents import initialize_agent from langchain.agents import AgentType from langchain prompt = "How many kids do the band members of Metallica have?" llm = VertexAI(temperature=0.1) tools = load_tools(["serpapi"], llm=llm) agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    organization. We designed our ideal AI platform using GPT-4o mini, 
 with a focus on lowering cognitive load and enabling the entire organization to iterate, develop, and deploy new, innovative solutions.
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    呈现关键变量之间的配对散点矩阵图和小提琴图,以及常 用的相关性热图等,每张图都有详细的解释。 其他常用英文指令 Prompts(指令) 描述 Prompts(指令) 描述 Can you load and preview the data? 加载,预览一下数据 Can you list the top 10 key points? 最重要的十个要点 What are the trends
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 Trends Artificial Intelligence

    and systems maintenance, particularly for high-density training clusters that operate near constant load. Revenue is driven by compute sales – whether in the form of AI APIs, enterprise platform fees, or
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
共 9 条
  • 1
前往
页
相关搜索词
DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelPAITVMMeetupShanghai20191116WhereAreWeGoingBringYourOwnCodegentoDynamicinGooglePromptEngineeringv7OpenAIAItheEnterprise清华大学DeepResearch科研TrendsArtificialIntelligence
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩