Trends Artificial Intelligence
$2 $4 2022 2023 2024Time to 365B Annual Searches = ChatGPT 5.5x Faster vs. Google Note: Dashed-line bars are for years where Google did not disclose annual search volumes. Source: Google public disclosures functions 9/24: Alibaba releases 100 open-source Qwen 2.5 models, with performance in line with Western competitors 1/25: DeepSeek releases its R1 & R1- Zero open- source reasoning 5/24 6/24 7/24 8/24 9/24 10/2411/2412/24 1/25 2/25 3/25 4/25 Average Daily Sessions / User, USA (Red Line) AI User + Usage + CapEx Growth = Unprecedented Average USA Session Duration (Minutes) & Daily0 码力 | 340 页 | 12.14 MB | 5 月前3
Google 《Prompt Engineering v7》can also be really useful for safety and toxicity. To control the output, simply add an additional line to your prompt like: ‘You should be respectful in your answer.’. Role prompting Role prompting is Listing**: - It lists all the files inside the specified folder using the `files=( “$folder_ name”/* )` command. This creates an array called `files` containing the paths to all the files in the folder. 4. **File “$file”)” ` command. This new file name is created by prefixing the original file name with the string “draft_”. - It then renames the file using the `mv “$file” “$new_file_name”` command, which moves0 码力 | 68 页 | 6.50 MB | 6 月前3
Deploy VTA on Intel FPGAContiguous Memory Allocation – Linux Kernel DEPLOY VTA ON INTEL FPGA https://pynq.readthedocs.io/en/v2.0/pynq_package/pynq.xlnk.html Configure Linux kernel Download Linux kernel from https://github. com/altera-opensource/linux-socfpga/archive/rel_socfpga-4.9.76-ltsi-rt_18.08.02_pr.tar.gz©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 6 Software - CMA Contiguous Memory Allocation – Linux Kernel Module vta/config/de10nano_config.json to vta_config.json Step 9: Go to vta/hardware/intel and run make command Step 10: Get the generated .sof file programmed into hardware Step 11: Evaluate the unit test script0 码力 | 12 页 | 1.35 MB | 6 月前3
TVM Meetup Nov. 16th - Linarop20/p20pro (kirin 970) -target=arm64-linux-android -mattr=+neon llvm firefly rk3399, rock960, ultra96 -target=aarch64-linux-gnu -mattr=+neon rasp3b (bcm2837) -target=armv7l-linux-gnueabihf -mattr=+neon pynq pynq -target=armv7a-linux-eabi -mattr=+neon GPU mali (midgard) firefly rk3399, rock960 (mali t860) N/A opencl bifrost hikey960 (mali g71) N/A FPGA vta pynq, ultra96 N/A sdaccel Out-of-tree support or0 码力 | 7 页 | 1.23 MB | 6 月前3
DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language ModelMistral 7B Mixtral 8x7B Mixtral 8x22B Command R Command R+ Grok-1 DBRX Qwen1.5 32B Qwen1.5 72B LLaMA 1 Family LLaMA 2 Family LLaMA 3 Family Mixtral Family Command R Family Qwen1.5 Family (a) 0 500 码力 | 52 页 | 1.23 MB | 1 年前3
PAI & TVM Meetup - Shanghai 20191116-Dscm1p寻Ya7179 SCTDLt -DawtioHXeaomec' som=true 三Dloss5ca/9g=gsca/e ctom7 No need to modify or add any line of code. 计算平台事业部 COMPUTING PLATFORM Loss Scaling in TF 下和全于由 loss = loss_fn()0 码力 | 26 页 | 5.82 MB | 6 月前3
亿联TVM部署python tensorflow_blur.py to get the .log c. Use the .log, with target=“llvm –mcpu=i686 –mtriple=i686-linux-gnu” then TVM_NDK_CC=“clang –m32” python tf_blur.py�����������������������������������- DWORD WINAPI0 码力 | 6 页 | 1.96 MB | 6 月前3
TVM工具组/ roipooling / permute / priorbox绝赞招聘中 未来 命令行工具 将 caffe 模型转换的功能,通过一组命令行工具提供,命令行工具支持 windows / linux 平台。 支持更多 caffe op / net 随着客户需求和社区发展,提供更多的 caffe 分支变种的 op / net 支持。绝赞招聘中 THANKS0 码力 | 6 页 | 326.80 KB | 6 月前3
Deepseek R1 本地部署完全手册消费级设备 Mac Studio(192GB统⼀内存) 10+ token/秒 ⾼性能服务器 4×RTX 4090(96GB显存+384GB内存) 7-8 token/秒(混合推理) 3. 部署步骤(Linux示例) 1. 安装依赖⼯具: # 安装llama.cpp(⽤于合并分⽚⽂件) /bin/bash -c "$(curl -fsSL https://raw.githubusercontent0 码力 | 7 页 | 932.77 KB | 8 月前3
00 Deepseek官方提示词2. 贴合用户需求,描述智能助手的定位、能力、知识储备 3. 提示词应清晰、精确、易于理解,在保持质量的同时,尽可能简洁 4. 只输出提示词,不要输出多余解释 USER “ 请帮我生成一个 Linux ” 助手 的提示词 2. 文案大纲生成:根据用户提供的主题,来生成文案大纲 SYSTEM 你是一位文本大纲生成专家,擅长根据用户的需求创建一个有条理且易于扩展成完整文章的大纲,你拥有强大的0 码力 | 4 页 | 7.93 KB | 8 月前3
共 11 条
- 1
- 2













