积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(18)人工智能(18)

语言

全部英语(7)zh(6)[zh](1)日语(1)kor(1)ro(1)中文(简体)(1)

格式

全部PDF文档 PDF(18)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 18 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • [zh]
  • 日语
  • kor
  • ro
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 OctoML OSS 2019 11 8

    support for microcontrollers in TVM o_ Virtual Machine and dynamic NNs support (w/ AWS folks) o_ Improved NLP support, with focus on transformers QQ octoML Core Infrastructure Refactors ee New Integer very Popular and require first class support in TVML. ee What we've done: o Extend the relay ONNX frontend to support all opset versions of BERT. 里This enables importing of native ONNX models and those converted Tensorflow. 5 , Improve scheduling of batch matrix multiplies. 时”Early autotuning templates improve performance by ~20% e What we're working on: This prevents most compute layers from being fused. Reshape
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    = Unprecedented • AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer Usage Rising • AI Usage + Cost + Loss Growth = Unprecedented • AI Monetization China USA – LLM #2 AI Model Compute Costs High / Rising + Inference Costs Per Token Falling = Performance Converging + Developer Usage Rising 3 Cost of Key Technologies Relative to Launch Year % of competitive. Breakthroughs in large models, cost-per-token declines, open-source proliferation and chip performance improvements are making new tech advances increasingly more powerful, accessible, and economically
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Quantizer Compiler Tensor Graph Optimization Framework Tensor Graph to Xilinx Tensor Graph Frontend Deep Learning Frameworks https://github.com/xilinx© Copyright 2018 Xilinx TVM as Unified ML Front c_char_p(graph_path.value).value layout = c_char_p(output_layout.value).value … >> 12© Copyright 2018 Xilinx Performance Pipelines ˃ References to our latest results: https://github.com/Xilinx/AI-Model-Zoo (embedded measurements we track: Latency & Throughput ˃ ML pipeline contains multiple stages, performance limited by slowest one ˃ Performance results based on Xilinx own runtime pipeline available in github (https://github
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 TVM Meetup: Quantization

    int32] */} Asymmetric© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Frontend Parsers • TFLite Pre-quantized Models • In good shape • Supports all Image Classification PreQuantized reserved. Accuracy© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Performance Comparison • Metric – Latency in ms for batch size = 1 • 1.7x speedup on Inception asymmetric
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    through sparse computation. Compared with DeepSeek 67B, DeepSeek-V2 achieves significantly stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum even with only 21B activated parameters, DeepSeek-V2 and its chat versions still achieve top-tier performance among open-source models. The model checkpoints are available at h t t p s : / / g i t h u b . p S e e k - V 2 . 0 20 40 60 80 100 Activated Parameters (Billions) 55 60 65 70 75 80 Performance (MMLU) DeepSeek-V2 DeepSeek 67B LLaMA 1 33B LLaMA 1 65B LLaMA 2 13B LLaMA 2 34B LLaMA 2
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    We’re seeing AI deliver significant, measurable improvements on three fronts: 01 Workforce performance Helping people deliver higher-quality outputs in shorter 
 time frames. 02 Automating routine product improvements. That means shipping updates regularly, getting feedback, and improving performance and safety at every step. The result: users access new advancements in AI early and often—and job matching engine against the GPT-powered version with the new, customized context. 
 The performance uplift was significant: A 20% increase in job applications started A 13% uplift in downstream
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    well is to build your agent prototype with the most capable model for every task to establish a performance baseline. From there, try swapping in smaller models to see 
 if they still achieve acceptable fail. In summary, the principles for choosing a model are simple: 01 Set up evals to establish a performance baseline 02 Focus on meeting your accuracy target with the best models available 03 Optimize for many complex workflows, splitting up prompts and tools across multiple agents allows for improved performance and scalability. When your agents fail to follow complicated instructions 
 or consistently
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    Engineering February 2025 25 Step-back prompting Step-back8 prompting is a technique for improving the performance by prompting the LLM to first consider a general question related to the specific task at hand thought appears to improve robustness when moving between different LLM versions. Which means the performance of your prompt should drift less between different LLMs than if your prompt does not use reasoning (APE). This method15 not only alleviates the need for human input but also enhances the model’s performance in various tasks. You will prompt a model to generate more prompts. Evaluate them, possibly alter
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 Dynamic Model in TVM

    224] dtype = "float32" block = get_model('resnet50_v1', pretrained=True) mod, params = relay.frontend.from_mxnet(block, shape={input_name: input_shape}, dtype=dtype) tvm.relay.transform.dispatch_global_func(mod
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 TVM@AliOS

    1.31 -35 1 129 中131 124有23152136 2 1.14 am omo oo Convolution Workload Performance AiOS 1驱动万物智能 Alios TVM @ ARM CPU INT8 Depthwise Convolution 。, NHWC layout 。 Using TVM schedule 09工08 工区 0.77 0.77 | | | Depthwise Convolution Workload Performance Alios TVM @ ARM CPU INT8 Performance Comparison @ rasp 3b+ AARCH64 aoo0 8.87 sm ao 7m am sm 3.83 om ao 2.08 2 to cooperate with LLVM to simulate GEMM microkernel /NiiOS ! 驱动万物智能 Alios TVM @ ARM CPU FP32 Performance Comparison AARCH64 12 135 117 工1 1 1.07 国
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
OctoMLOSS201911TrendsArtificialIntelligenceXDNNTVMNovMeetupQuantizationDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelOpenAIAIintheEnterprisepracticalguidetobuildingagentsGooglePromptEngineeringv7DynamicAliOS
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩