积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(9)人工智能(9)

语言

全部英语(4)zh(2)日语(1)ro(1)中文(简体)(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 9 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 日语
  • ro
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Google 《Prompt Engineering v7》

    Contextual prompting 23 Table of contents Step-back prompting 25 Chain of Thought (CoT) 29 Self-consistency 32 Tree of Thoughts (ToT) 36 ReAct (reason & act) 37 Automatic Prompt Engineering 40 Code prompting language model input and output, a text prompt (sometimes accompanied by other modalities such as image prompts) is the input the model uses to predict a specific output. You don’t need to be a data scientist stealth and underwater exploration skills to survive. Table 9. An example of prompting for self consistency Yeah those topics seem like a good fit for a first-person video game. Let’s go back to the original
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    whether to drop tokens during inference according to the efficiency requirements, and always ensure consistency between training and inference. 3. Pre-Training 3.1. Experimental Setups 3.1.1. Data Construction
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    carried out in 3/25 using GPT-4.5. During the test, participants incorrectly identified the left image (Witness A) as human with 87% certainty, saying ‘A had human vibes. B had human imitation vibes B was human. AI Development Trending = Unprecedented44 AI Performance = Increasingly Realistic Image Generation… Notes: Dates shown are the release dates of each Midjourney model. Source: Midjourney Penguin, ‘How Midjourney Evolved Over Time (Comparing V1 to V6.1 Outputs)’ (9/24) AI-Generated Image: ‘Women’s Necklace with a Sunflower Pendant’ – 2/22-4/25, per Midjourney / Gold Penguin Model v1
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Overlay Processor ˃ DNN Specific Instruction Set Convolution, Max Pool etc. ˃ Any Network, Any Image Size ˃ High Frequency & High Compute Efficiency ˃ Supported on U200 – 3 Instances U250 – 4 Instances Systolic Array Bias ReLU Bias ReLU Bias ReLU Bias ReLU Pooling Pooling Pooling Pooling Image Queue Instruction Buffer Cross Bar Pooling/ EWA© Copyright 2018 Xilinx Xilinx Edge DPU IP (DPUv2) networks >> 4© Copyright 2018 Xilinx Inference Flow >> 5 MxNet CPU Layers FPGA Layers Runtime Image Model Weights Calibration Set Quantizer Compiler Tensor Graph Optimization Framework Tensor Graph
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 普通人学AI指南

    码、运行时、系统工具、系统库和设置。 2. 镜像(Image):用于创建容器的只读模板。一个镜像可以包含完整的操作 系统环境。 3. Dockerfile:定义镜像内容的文本文件,包含了构建镜像的所有指令。 4. Docker Hub:公共的 Docker 镜像仓库,用于存储和分发 Docker 镜像。 5. 拉取镜像:docker pull <image_name> 6. 构建镜像:在包含 Dockerfile Dockerfile 目录中运行:docker build -t <image_name> . 常用命令: 1. 列出正在运行的容器:docker ps 2. 列出所有容器:docker ps -a 3. 停止一个容器:docker stop 4. 删除一个容器:docker rm 20 4.2.2 下载 docker docker
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    requires 40us sampling net runtime - First PyTorch model used a 3,400us sampling net runtime Image from LPCNetExit, Pursued By A Bear - 3400us (baseline), 40us (target) - 85x speedup - Uh ohEnter general technique, allows clean vectorization - Related work in Gibiansky (2017), Gray (2019), et al. Image from OpenAI- Add relay.nn.sparse_dense for block-sparse matrix multiplication (~50 lines of TVM IR)
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 Deploy VTA on Intel FPGA

    SDCard Image from Terasic (Require Registration) Step 3: Get files from https://github.com/liangfu/de10-nano-supplement Step 4: Extract the files Step 4.1: Replace the zImage in SDCard Image Step 4
    0 码力 | 12 页 | 1.35 MB | 5 月前
    3
  • pdf文档 TVM Meetup: Quantization

    rights reserved. Frontend Parsers • TFLite Pre-quantized Models • In good shape • Supports all Image Classification PreQuantized hosted models • MXNet Pre-quantized Models • Tested internally with
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    Models with dynamism ● Control flow (if, loop, etc) ● Dynamic shapes ○ Dynamic inputs: batch size, image size, sequence length, etc. ○ Output shape of some ops are data dependent: arange, nms, etc. ○ Control
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
共 9 条
  • 1
前往
页
相关搜索词
GooglePromptEngineeringv7DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTrendsArtificialIntelligenceXDNNTVMNov2019普通通人普通人AI指南FacebookAWSMeetupTalkDeployVTAonIntelFPGAQuantizationDynamicin
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩