Google 《Prompt Engineering v7》efficacy: the model you use, the model’s training data, the model configurations, your word-choice, style and tone, structure, and context all matter. Therefore, prompt engineering is an iterative process high-quality prompts that guide LLMs to produce accurate outputs. This process involves tinkering to find the best prompt, optimizing prompt length, and evaluating a prompt’s writing style and structure in relation translation, code generation, and code documentation or reasoning. Please feel free to refer to Google’s prompting guides2,3 with simple and effective prompting examples. When prompt engineering, you0 码力 | 68 页 | 6.50 MB | 6 月前3
OpenAI 《A practical guide to building agents》A practical guide to building agents Contents What is an agent? 4 When should you build an agent? 5 Agent design foundations 7 Guardrails 24 Conclusion 32 2 Practical guide to building agents Introduction multimodality, and tool use have unlocked a new category of LLM-powered systems known as agents. This guide is designed for product and engineering teams exploring how to build their first agents, distilling and effectively. After reading this guide, you’ll have the foundational knowledge you need to confidently start building your first agent. 3 A practical guide to building agents What is an agent?0 码力 | 34 页 | 7.00 MB | 6 月前3
Trends Artificial Intelligence
represent key underpinnings of these changes. As does leadership evolution for the global powers. Google’s founding mission (1998) was to ‘organize the world’s information and make it universally accessible units are the installed based of smartphones & tablets in 2020. Cloud & data center capex includes Google, Amazon, Microsoft, Meta, Alibaba, Apple, IBM, Oracle, Tencent, & Baidu for ten years ending 2022 Annual Searches = ChatGPT 5.5x Faster vs. Google Note: Dashed-line bars are for years where Google did not disclose annual search volumes. Source: Google public disclosures, OpenAI (12/24). ChatGPT0 码力 | 340 页 | 12.14 MB | 4 月前3
开源中国 2023 大模型(LLM)技术报告SageMaker、Google Cloud AI Platform 和 Microsoft Azure Machine Learning 都是提供端到 端机器学习服务的云平台。 这些工具和库专门为加速机器学习模型的训练和推理而设计,通常利 用 GPU 或 TPU 等硬件。这类工具可以显著提高训练和推理的速度, 使得处理大规模数据集和复杂模型变得可行。NVIDIA CUDA 和 Google Cloud 用于优化计算密集型任务,而 Java 在企业环境中处理模型部署和系 统集成方面常见。JavaScript 适用于 Web 环境的 LLM 应用。 13 / 32 LLM 基础设施:编程语言 2023 年是大语言模型 (LLM) 之年,Python 作为人工智能领域使用度最高的编程语言,在 2023 年到底有多火? 从各种开发者报告、编程语言榜单来看。只要出现有关编程语言流行度的排名, ,而 Java、C/C++0 码力 | 32 页 | 13.09 MB | 1 年前3
OpenAI - AI in the EnterpriseDomain expertise Fine-tuned models better understand your industry’s terminology, style, and context. Consistent tone and style For a retailer, that could mean every product description stays true to brand other agents to get things done. We’ll continue to report back from the front lines of AI to help guide your own thinking. Product Note: Operator Operator is an example of OpenAI’s agentic approach0 码力 | 25 页 | 9.48 MB | 5 月前3
DeepSeek图解10页PDF这种架构正好完美做到了 Scaling Laws, Transformer 就是自然语言处理领域实现扩展规律的最好的网络结构。 2.2 Transformer 基础架构 LLM 依赖于 2017 年 Google 提出的 Transformer 模型,该架构相比传统的 RNN(递归神经网络)和 LSTM(长短时记忆网络)具有更高的训练效率和 更强的长距离依赖建模能力。Transformer 由多个关键组件组成:1 interconnects.ai/p/deepseek-r1-recipe-for-o1 https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-mixture-of- experts 教程作者:郭震,工作 8 年目前美国 AI 博士在读,公众号:郭震 AI,欢迎关注获取更多原创教程。资 料用心打磨且开源,是为了帮助更多人了解获取0 码力 | 11 页 | 2.64 MB | 8 月前3
DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language ModelFormats 34 3 1. Introduction In the past few years, Large Language Models (LLMs) (Anthropic, 2023; Google, 2023; OpenAI, 2022, 2023) have undergone rapid development, offering a glimpse into the dawn of arXiv preprint arXiv:2101.00027, 2020. Google. Introducing gemini: our largest and most capable ai model, 2023. URL https: //blog.google/technology/ai/google-gemini-ai/. A. Gu, B. Rozière, H. Leather0 码力 | 52 页 | 1.23 MB | 1 年前3
普通人学AI指南类模型通过训练大量的数据来获 得广泛的知识和能力。这些模型通常具有庞大的参数数量,能够处理复杂的任 务,如自然语言理解、图像识别、语音识别等。 闭源大模型包括 OpenAI 的 GPT 系列和 Google 的 BERT。这些模型因其 高效的学习能力和强大的通用性而受到关注。 开源大模型以 Meta 的 Llama 系列,2024 年 4 月,Llama3 发布,包括 8B 和 70B 模型。 图0 码力 | 42 页 | 8.39 MB | 8 月前3
TVM: Where Are We GoingSubclassesUnified Runtime Benefit mod.export_library("mylib.so") Unified library packaging Free API (Py/Java/Go) lib = tvm.module.load("mylib.so") func = lib["npufunction0"] func(a, b) Automatic RPC Support0 码力 | 31 页 | 22.64 MB | 5 月前3
Facebook -- TVM AWS Meetup Talkmethods not delivering generalized performance 2 Why TVM? XTVM for Speech Synthesis - WaveRNN-style model architecture - Autoregressive sampling net running at faster than real-time - Compute split0 码力 | 11 页 | 3.08 MB | 5 月前3
共 14 条
- 1
- 2













