积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部英语(6)zh(4)中文(简体)(2)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    USA-Based AI LLM Revenue vs. Compute Expense Note: Figures are estimates. Source: The Information, public estimates 2022 2024 Revenue (Blue) & Compute Expense (Red) +$3.7B -$5B Details on Page 173 volumes. Source: Google public disclosures, OpenAI (12/24). ChatGPT figures are estimates per company disclosures of ~1B daily queries Annual Searches by Year (B) Since Public Launches of Google & ChatGPT 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Google Search ChatGPT Years Since Public Launch (Google = 9/98, ChatGPT = 11/22)21 In 1998, tapping emerging Internet access, Google set
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 TVM Meetup Nov. 16th - Linaro

    Linaro-hosted https://www.mlplatform.org/ ● Git and review servers ● Forums and issue tracker ● Public mailing lists and IRC channel ● Internal Jira project restricted to Linaro members ● Three sub-projects: -target=arm64-linux-android -mattr=+neon llvm firefly rk3399, rock960, ultra96 -target=aarch64-linux-gnu -mattr=+neon rasp3b (bcm2837) -target=armv7l-linux-gnueabihf -mattr=+neon pynq -target=armv7a-linux-eabi
    0 码力 | 7 页 | 1.23 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    controls 9 Temperature 9 Top-K and top-P 10 Putting it all together 11 Prompting techniques 13 General prompting / zero shot 13 One-shot & few-shot 15 System, contextual and role prompting 18 System probability of being the next token will meet the top-P criteria, and none are selected out. As a general starting point, a temperature of .2, top-P of .95, and top-K of 30 will give you relatively coherent is and what it takes, let’s dive into some examples of the most important prompting techniques. General prompting / zero shot A zero-shot5 prompt is the simplest type of prompt. It only provides a description
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 亿联TVM部署

    tensorflow_blur.py to get the .log c. Use the .log, with target=“llvm –mcpu=i686 –mtriple=i686-linux-gnu” then TVM_NDK_CC=“clang –m32” python tf_blur.py�����������������������������������- DWORD WINAPI
    0 码力 | 6 页 | 1.96 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    Subgraph Library Relay Runtime (VM, Graph Runtime, Interpreter) Your Dispatcher Target Device General Devices (CPU/GPU/FPGA) Mark supported operators or subgraphs 1. Implement an operator-level annotator Subgraph Library Relay Runtime (VM, Graph Runtime, Interpreter) Your Dispatcher Target Device General Devices (CPU/GPU/FPGA) Mark supported operators or subgraphs 1. Implement extern operator functions Subgraph Library Relay Runtime (VM, Graph Runtime, Interpreter) Your Dispatcher Target Device General Devices (CPU/GPU/FPGA) Mark supported operators or subgraphs 1. Implement extern operator functions
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    have undergone rapid development, offering a glimpse into the dawn of Artificial General Intelligence (AGI). In general, the intelligence of an LLM tends to improve as the number of parameters increases as code and math prompts, exhibits unique characteristics that are distinct from the training on general data. For example, the mathematical and coding abilities of our model can keep improving over a longer benchmarks. Exploring how to align a model with human preferences without 20 compromising its general performance presents a valuable direction for future research. Online Reinforcement Learning. In
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    complex architecture, customers typically achieve greater success with an incremental approach. In general, orchestration patterns fall into two categories: 01 Single-agent systems, where a single model equipped may have! 15 A practical guide to building agents When to consider creating multiple agents Our general recommendation is to maximize a single agent’s capabilities first. More agents can provide intuitive Docs OpenAI is an AI research and deployment company. Our mission is to ensure that artificial general intelligence benefits all of humanity. 33 A practical guide to building agents
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    core-private L1 dcaches - Use rational approximations for transcendentals (exp, tanh, erf, etc) - very general technique, allows clean vectorization - Related work in Gibiansky (2017), Gray (2019), et al. Image
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    Platform OpenAI is an AI research and deployment company. Our mission is to ensure that artificial general intelligence benefits all of humanity. 24 AI in the Enterprise
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    R1-Zero 虽然展现出惊人的推理能力提升,但是也出现了回复时 语言混合,非推理任务回复效果差的问题,为了解决这些问题,DeepSeek 提出通用强化学习训练框架。 如图7所示,通用强化学习(General Reinforcement Learning)基于 SFT- checkpoint,模型进行通用强化学习(RL)训练,优化其在推理任务和其他 教程作者:郭震,工作 8 年目前美国 AI 博士在读,公众号:郭震
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceTVMMeetupNov16thLinaroGooglePromptEngineeringv7亿联部署BringYourOwnCodegentoDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelOpenAIpracticalguidebuildingagentsFacebookAWSTalkAIintheEnterprise图解10PDF
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩