积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(9)人工智能(9)

语言

全部英语(4)[zh](1)日语(1)kor(1)zh(1)中文(简体)(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 9 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • [zh]
  • 日语
  • kor
  • zh
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    surpasses the performance of other leading models (GPT- 4o, Claude 3.5) on some reasoning tests 3/23: OpenAI releases GPT-4, a multimodal* model capable of processing both text & images Testing Within 1-2 Years Fully Implemented Plan on Start Testing Within 12 Months Running Initial Tests / Experiments Note: Survey question asked about the extent to which marketing executives worldwide collection of pages into a set of utilities – AI agents are turning conversational interfaces into functional infrastructure. Whereas early assistants needed clear inputs and produced narrow outputs, agents
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    limits the maximum batch size and sequence length. 2.1.2. Low-Rank Key-Value Joint Compression The core of MLA is the low-rank joint compression for keys and values to reduce KV cache: c?? ? = ? ???h? 4 5 6 7 8 9 10 Score Figure 4 | Evaluation results on the “Needle In A Haystack” (NIAH) tests. DeepSeek-V2 performs well across all context window lengths up to 128K. linear computations across a context length of 128K. As shown in Figure 4, the results on the “Needle In A Haystack” (NIAH) tests indicate that DeepSeek-V2 performs well across all context window lengths up to 128K. 3.2. Evaluations
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    traits in co-occurring marine snails distributed across a vertical rocky intertidal gradient. Functional Ecology 25:177-185 Bourdeau PE(2011) Constitutive and inducible defensive traits in co-occurring
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    the deep sea to outsmarting cunning aquatic predators, every moment in this uncharted underworld tests the limits of human endurance and courage. Table 10. An example of prompting for self consistency prompts are part of an operationalized system, and as a prompt engineer you should rely on automated tests and evaluation procedures to understand how well your prompt generalizes to a task. Prompt engineering
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 TVM@AliOS

    MobileNetv2 LaneNet 图TFLite1core 图TFLite4core 国QNNPACK 1core 四QNNPACK4core 四TVM1core 四TVM4core AiOS 1驱动万物智能 Alios TVM @ ARM CPU FP32 。,NHWC layout 。 For pointwise
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    Sparse Transformers, etc - Reduce precision with int8/float16 - very helpful to maintain model in core-private L1 dcaches - Use rational approximations for transcendentals (exp, tanh, erf, etc) - very lines of Relay IR) - A few days of work - TVM sampling model running in 30us on single server CPU core - Beat hand-written, highly optimized baselines (https://github.com/mozilla/LPCNet) by ~40% - Bonus:
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    multiple employees to contribute to TVML. ee Today we'ltouch on a few of those contribution areas: o Core Infrastructure Improvements to TVM o_uTVM: support for microcontrollers in TVM o_ Virtual Machine dynamic NNs support (w/ AWS folks) o_ Improved NLP support, with focus on transformers QQ octoML Core Infrastructure Refactors ee New Integer Analysis Infrastructure o_ Supports the ability to handle
    0 码力 | 16 页 | 1.77 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    chatbots, single-turn LLMs, or sentiment classifiers—are not agents. More concretely, an agent possesses core characteristics that allow it to act reliably and consistently on behalf of a user: 01 It leverages building agents Agent design foundations In its most fundamental form, an agent consists of three core components: 01 Model The LLM powering the agent’s reasoning and decision-making 02 Tools External
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 TVM Meetup: Quantization

    Amazon Web Services, Inc. or its Affiliates. All rights reserved. Evaluation • Intel Cascade Lake 12-core Server • TFLite Pre-quantized Hosted Models© 2019, Amazon Web Services, Inc. or its Affiliates. All
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
共 9 条
  • 1
前往
页
相关搜索词
TrendsArtificialIntelligenceDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModel清华大学DeepResearch科研GooglePromptEngineeringv7TVMAliOSFacebookAWSMeetupTalkOctoMLOSS201911OpenAIpracticalguidetobuildingagentsQuantization
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩