积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(6)人工智能(6)

语言

全部中文(简体)(4)英语(2)

格式

全部PDF文档 PDF(6)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 6 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek图解10页PDF

    Learning, RL) . . . . . . . 7 3 DeepSeek-R1 精华图解 . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 DeepSeek-R1 完整训练过程 . . . . . . . . . . . . . . . . . . . 7 3.1.1 核心创新 1:含 R1-Zero 的中间推理模型 . . . . • 步骤 1:人类标注者提供高质量回答。 • 步骤 2:模型学习人类评分标准,提高输出质量。 • 步骤 3:强化训练,使得生成的文本更符合人类偏好。 3 DeepSeek-R1 精华图解 3.1 DeepSeek-R1 完整训练过程 DeepSeek-R1 主要亮点在于出色的数学和逻辑推理能力,区别于一般的通 用 AI 模型。其训练方式结合了强化学习(RL)与监督微调(SFT),创造
    0 码力 | 11 页 | 2.64 MB | 8 月前
    3
  • pdf文档 普通人学AI指南

    . 13 2.6.4 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 零代码本地部署 AI 后端 13 3.1 大模型 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 步骤 1:安装 Ollama . . . 8B,70B 两种参数,分 为基础预训练和指令微调两种模型。 与 Llama2 相比,Llama3 使用了 15T tokens 的训练数据,在推理、数学、 代码生成、指令跟踪等能力获得大幅度提升。 3.1 大模型 Llama3 3.1.1 步骤 1:安装 Ollama Ollama 可以简单理解为客户端,实现和大模型的交互。ollama 软件 win 和 mac 都包括,如图 11 所示。 13
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    安全治理框架1. 人工智能安全治理原则 …………………………………… 1 2. 人工智能安全治理框架构成 ……………………………… 2 3. 人工智能安全风险分类 …………………………………… 3 3.1 人工智能内生安全风险 ……………………………… 3 3.2 人工智能应用安全风险 ……………………………… 5 4. 技术应对措施 ……………………………………………… 7 4.1 针对人工智能内生安全风险 人工智能安全风险分类 人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期 各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当 使用、滥用甚至恶意利用带来的安全风险。 3.1 人工智能内生安全风险 3.1.1 模型算法安全风险 (a)可解释性差的风险。以深度学习为代表的人工智能算法内部运行逻 辑复杂,推理过程属黑灰盒模式,可能导致输出结果难以预测和确切归因,如 有异常难以快速修正和溯源追责。
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    Token-Dropping Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Pre-Training 11 3.1 Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 efficiency requirements, and always ensure consistency between training and inference. 3. Pre-Training 3.1. Experimental Setups 3.1.1. Data Construction While maintaining the same data processing stages as
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    models for each company that are measured: for OpenAI, o1; for Alibaba, Qwen 2.5 72B; for Meta, Llama 3.1 405B; for Anthropic, Claude 3.5 Sonnet. The tests used are HumanEval, MATH-500, MMLU and GPQA Diamond informational restrictions. Source: Sensor Tower (5/6/25) Country % of Global Users (4/25) 33.9% 2.7% 3.1% 3.5% 4.4% 6.9% 9.2% DeepSeek Mobile App Monthly Active Users (MAUs) (MM) – 1/25-4/25, per Sensor
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    数据嫁接:若缺乏具体数据,直接让AI生成合理虚构值(标注“示例”规避风险): p “假设园区占地500亩,日均处理包裹量50万件,请计算自动化分拣设备的配置数量,用表格展示。” p 模板复制:对同类章节(如3.1/3.2/3.3)使用相同指令模板,仅替换关键词。 p 强制格式:要求AI输出带编号小标题、分点、表格的内容,直接粘贴后即显“专业感”。 第三阶段:20分钟——用AI补全软性内容(目标:1000字)
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
共 6 条
  • 1
前往
页
相关搜索词
DeepSeek图解10PDF普通通人普通人AI指南人工智能人工智能安全治理框架1.0V2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTrendsArtificialIntelligence清华华大大学清华大学如何抓住红利
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩