积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(10)人工智能(10)

语言

全部英语(5)[zh](1)ro(1)zh(1)中文(简体)(1)中文(简体)(1)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.025 秒,为您找到相关结果约 10 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • [zh]
  • ro
  • zh
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    AI Will Likely Do in Ten Years, per ChatGPT Source: ChatGPT (5/15/25) AI = Circa 2035?36 AI Development Trending = Unprecedented37 Machine-Learning Model* Trending = In 2015... Industry Surpassed Academia Models by Sector – 2003-2024, per Stanford HAI Annual New Notable Machine-Learning Models AI Development Trending = Unprecedented38 AI Developer Growth (NVIDIA Ecosystem as Proxy) = +6x to 6MM Developers to reach 2 million.’ Source: NVIDIA blog posts, press releases, & company overviews +6x AI Development Trending = Unprecedented Global Developers in NVIDIA Ecosystem (MM) – 2005-2025, Per NVIDIA39
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    costs and inference efficiency of DeepSeek 67B (Dense) and DeepSeek-V2. Contents 1 Introduction 4 2 Architecture 6 2.1 Multi-Head Latent Attention: Boosting Inference Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.3 Training and Inference Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Alignment 16 4.1 Supervised Fine-Tuning Language Models (LLMs) (Anthropic, 2023; Google, 2023; OpenAI, 2022, 2023) have undergone rapid development, offering a glimpse into the dawn of Artificial General Intelligence (AGI). In general, the intelligence
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    value faster and with greater buy-in from 
 users and stakeholders. Our approach: iterative development OpenAI is organized around three teams. Our Research Team advances the foundations of AI, developing are best-placed to improve 
 it with AI. 06 Unblock your
 developers Automating the software development lifecycle can multiply 
 AI dividends. 07 Set bold 
 automation goals Most processes involve scale up to significant business impact. But scaling up also meant using more tokens. To increase efficiency, OpenAI and Indeed 
 worked together to fine-tune a smaller GPT model that was able to deliver
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Set Convolution, Max Pool etc. ˃ Any Network, Any Image Size ˃ High Frequency & High Compute Efficiency ˃ Supported on U200 – 3 Instances U250 – 4 Instances Amazon F1 ˃ ~1536 DSPs @ 700MHz Execution WB WR SCHEDULER CTRL SIGNALS MISC CALC AVG POOL MAX POOL ROI POOL ELEMENT WISE ... Efficiency > 50% for mainstream neural networks >> 4© Copyright 2018 Xilinx Inference Flow >> 5 MxNet
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 TVM@AliOS

    GPU /NiiOS ! 驱动万物智能 8000% 7000% 6000% 5000% 4000% 3000% 2000% 1000% 0o0% GEMM Hardware Efficiency @ Intel Apollo Lake GPU 60.39% 512,512,512 国OpenVINO 国TVM 68.89% 1024 1024, 1024 PART Five
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
  • pdf文档 Gluon Deployment

    Scientist and SDE positions 2. Internship for students interested in ML system. 3. Research & Development 3. Please contact Yida (wangyida [AT] amazon [DOT] com) if interested. We are hiring! 1 2
    0 码力 | 8 页 | 16.18 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    Apache TVM recently. Independent governance, allowing competitors to collaborate. Open Code Open Development Open GovernanceAcknowledgement Apache (incubating) TVM community Our awesome community members
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    More on this table format, the importance of tracking prompt engineering work, and the prompt development process is in the Best Practices section later in this chapter (“Document the various prompt
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    需要考虑的因素 任务目标、目标受众、文章类型、字数要求、特殊要求 在分析阶段,首先明确 任务目标和关键问题 通过四个关键步骤:分析(Analysis)、构思(Ideation)、发展(Development) 和评估(Assessment),为提示语链的设计提供系统化的指导。 构思阶段注重创新性思 维,探索多种解决方案 在发展阶段,逐步深化 构思并形成具体的内容 方案 最后的评估阶段用于反
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    需要考虑的因素 任务目标、目标受众、文章类型、字数要求、特殊要求 在分析阶段,首先明确 任务目标和关键问题 通过四个关键步骤:分析(Analysis)、构思(Ideation)、发展(Development) 和评估(Assessment),为提示语链的设计提供系统化的指导。 构思阶段注重创新性思 维,探索多种解决方案 在发展阶段,逐步深化 构思并形成具体的内容 方案 最后的评估阶段用于反
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
共 10 条
  • 1
前往
页
相关搜索词
TrendsArtificialIntelligenceDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelOpenAIAIintheEnterpriseXDNNTVMNov2019AliOSGluonDeploymentWhereAreWeGoingGooglePromptEngineeringv7入门精通20250204清华华大大学清华大学
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩