积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(9)人工智能(9)

语言

全部英语(4)[zh](1)日语(1)ro(1)zh(1)中文(简体)(1)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 9 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • [zh]
  • 日语
  • ro
  • zh
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    Tim Berners-Lee invented the World Wide Web in 1989, per CERN. Source: Google, USA Department of Defense, CERN Internet – Public Release 1993* Knowledge Distribution Evolution = Over ~Six Centuries25 sometime in 2025. Around these core compute costs sit additional high-cost layers: research, data acquisition and hosting, and a mix of salaries, general overhead, and go-to-market operations. Even as the including our IPO, our major strategic deal with OpenAI as well as other customer wins, our acquisition of Weights & Biases and many technical achievements… …Demand for our platform is robust and
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    condition is met. An effective strategy for managing complexity without switching to a multi-agent framework is to use prompt templates. Rather than maintaining numerous individual prompts for distinct use software security measures. 24 A practical guide to building agents Think of guardrails as a layered defense mechanism. While a single one is unlikely to provide sufficient protection, using multiple, specialized
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    tokens. We optimize the attention modules and Feed-Forward Networks (FFNs) within the Trans- former framework (Vaswani et al., 2017) with our proposed Multi-head Latent Attention (MLA) and DeepSeekMoE. (1) segmenting experts into finer granularity for higher expert specialization and more accurate knowledge acquisition, and isolating some shared experts for mitigating knowledge redundancy among routed experts. With Infrastructures DeepSeek-V2 is trained based on the HAI-LLM framework (High-flyer, 2023), an efficient and light-weight training framework developed internally by our engineers. It employs a 16-way zero-bubble
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 TVM Meetup: Quantization

    dialect© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. TVM Overview Framework Graph Mxnet TF …. parsers Relay Graph Target-independent Relay passes Target-optimized graph .. More targets AutoTVM – Tuning the kernels Optimized Binary Codegen – LLVM, Cuda, C, … Framework Parsers Graph level optimizations Tensor-level optimizations Machine code generation© 2019, Amazon reserved. Quantization Appraoches in TVM Framework FP32 Graph MXNet Parser TF parser …. Relay FP32 Graph Relay Automatic Quantization Relay Int8 Graph Framework Pre-quantized Graph MXNet Parser TF Parser
    0 码力 | 19 页 | 489.50 KB | 5 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    作为智能体 ü 角色 ü 功能 ü 技能 ü 约束 ü 工作流程 ü 输出格式 "全维度智能体提示框架" (Comprehensive Agent Prompting Framework, CAP Framework) 核心层: 1.身份定义 (Identity) •角色属性 •专业背景 •交互特征 执行层: 2. 能力矩阵 (Capability Matrix) •功能范围
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    Engineering February 2025 19 Distinguishing between system, contextual, and role prompts provides a framework for designing prompts with clear intent, allowing for flexible combinations and making it easier To see this in action, you need to write some code. In code Snippet 1 I am using the langchain framework for Python, together with VertexAI (google-cloud-aiplatform) and the google-search-results pip
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 TVM: Where Are We Going

    Hardware CuDNN NNPack MKL-DNN Hand optimized Open source, automated end-to- end optimization framework for deep learning.TVM Stack High-Level Differentiable IR Tensor Expression and Optimization
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Runtime Image Model Weights Calibration Set Quantizer Compiler Tensor Graph Optimization Framework Tensor Graph to Xilinx Tensor Graph Frontend Deep Learning Frameworks https://github.com/xilinx©
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 TVM@AliOS

    nests marked as pipeline 。, Implement complete Hexagon runtime based on community PR. ADSPRPC Framework Applications Processor | | DSP Processor /NiiOS ! 驱动万物智能 Alios
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
共 9 条
  • 1
前往
页
相关搜索词
TrendsArtificialIntelligenceOpenAIpracticalguidetobuildingagentsDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTVMMeetupQuantization清华华大大学清华大学第二赋能职场GooglePromptEngineeringv7WhereAreWeGoingXDNNNov2019AliOS
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩