积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(19)人工智能(19)

语言

全部中文(简体)(8)英语(6)zh(3)中文(简体)(2)

格式

全部PDF文档 PDF(19)
 
本次搜索耗时 0.031 秒,为您找到相关结果约 19 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 英语
  • zh
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek-R1使用指南(简版)

    DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 & API 使用指南 DeepSeek-R1 网页端 &
    0 码力 | 25 页 | 5.57 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    何静 能做什么? 要怎么做? 效果如何? 一 能做什么? 数据挖掘 数据分析 数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 发 者能够负担得起高性能 AI 模型的训练和使用。  调用成本:DeepSeek R1 的 API 服务定价为每百万输入 tokens 1 元(缓存命中)/4 元(缓存未命中),每百万输出 tokens 16 元, 输出 API 价格仅为 OpenAI o1 的 3%。这种低廉的 API 价格进一 步降低了使用门槛。 DeepSeek R1 采用 MIT 许可协议开源发布,允许全球的研究者和开 MoE 架构效率高;长文本处理强; 中英文混合场景优化 在推理能力上稍逊于R1 在特定任务上稍逊于OpenAI O1 OpenAI OpenAI O1 闭源推理模型 复杂推理、文本生成 企业级 API 生态完善; 多模态交互流畅;开发者工具丰富 训练成本高;闭源且费用高昂; 中文支持弱于本土模型 OpenAI GPT-4o 闭源大语言模型 多语言处理、文本生成、 创意内容创作 全模态能力行业领先;
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    昆仑芯K200集群 企业级复杂任务推理 32B 壁彻算⼒平台+昇腾910B集群 科研计算与多模态处理 四、云端部署替代⽅案 1. 国内云服务商推荐 平台 核⼼优势 适⽤场景 硅基流动 官⽅推荐API,低延迟,⽀持多模态模型 企业级⾼并发推理 腾讯云 ⼀键部署+限时免费体验,⽀持VPC私有化 中⼩规模模型快速上线 PPIO派欧云 价格仅为OpenAI 1/20,注册赠5000万tokens 低成本尝鲜与测试 1. 成本警示: 70B模型:需3张以上80G显存显卡(如RTX A6000),单卡⽤户不可⾏。 671B模型:需8xH100集群,仅限超算中⼼部署。 2. 替代⽅案: 个⼈⽤户推荐使⽤云端API(如硅基流动),免运维且合规。 3. 国产硬件兼容性:需使⽤定制版框架(如昇腾CANN、沐曦MXMLLM)。 llama-gguf-split --merge DeepSeek-R1-UD-IQ1_M-00001-of-00004 chmod 600 /swapfile sudo mkswap /swapfile sudo swapon /swapfile 七、附录:技术⽀持与资源 华为昇腾:昇腾云服务 沐曦GPU:免费API体验 李锡涵博客:完整部署教程 结语 Deepseek R1 的本地化部署需极⾼的硬件投⼊与技术⻔槛,个⼈⽤户务必谨慎,企业⽤户应充 分评估需求与成本。通过国产化适配与云端服务,可显著降低⻛险并提升效率。技术⽆⽌境,
    0 码力 | 7 页 | 932.77 KB | 8 月前
    3
  • pdf文档 Manus AI:Agent元年开启

    ail/LinkedIn/Twitter•º p> • Ž4CîïÁ%5áâŽ4CîïÁ%kð,ñ%ã•ÌòPòóñ%AIŸ ôK> • AIdeAPIõö5z÷øÕáâAPIõö,ñTU)`ùÈúæGAIdeC…‰API> • AIçèûÞ&Šü5áâ'¶ý%ã)`Šü|þÿGChatGPT!"GAIçèûÞ&> • AI*+uv5´µ#$GManusuv,!"#$%AI*+,)`%&R<º»JK> ƒD‡5†[ˆGfigma> • 2022Eb,÷‹MonicauŒ>Monica!"#¶‰$•)€GAIŸ ,$ŒÜÝÞLMŽ•áâS),•ÌQŸ%ãR²cA+C•‘W O>Monica !"#. ChatGPT API áâ()G Chrome ßà,’L !"#$%Bloomberg*&'()2 Agent()9 Agent%;<=4 !"#$%Bloomberg*&'()Agent%;<=4 úï5\‚Agentû•‰G<" JKzkæ3º•,С‡ÓÔ]^#JKæ3ÕÖG$5Ç2¬'¶ñ%úï5\‚Agent¡e%&&‰G4Úæ3zkÆGöBC' £,'¶Gñ%ûî$Œ²%V¯úAPIæ3>(–ò)bºde)€GáÛ> • *UŸzAI Agent‰+LÌžúïm•)€áÛ51¬LJKí!úït¡‡í,c-]Gí!)€ÙÚÆ¡‡mYG.0cÓ*æÆÇ 2¬L'¶ñ%2µ¶úï,t¡‡&‰÷/Gwþ'¶
    0 码力 | 23 页 | 4.87 MB | 5 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    capabilities. Our Applied Team turns those models into products, like ChatGPT Enterprise and our API. And our Deployment Team takes these products into companies to address their most pressing use cases and resources in customizing and training their own AI models. OpenAI has invested heavily in our API to make it easier to customize and fine-tune models—whether as a self-service approach or using our any UI issues. Updating systems of record on behalf of users, without technical instructions 
 or API connections. The result: end-to-end automation, freeing teams from repetitive tasks and boosting
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    For example, a step might instruct the agent to ask the user for their order number or to call an API to retrieve account details. Being explicit about the action (and even the wording of a user-facing we combine LLM-based guardrails, rules-based guardrails such as regex, and the OpenAI moderation API to vet our user inputs. Respond ‘we cannot process your message. Try again!’ Continue with function User AgentSDK gpt-4o-mini Hallucination/ relevence gpt-4o-mini
 (FT) 
 safe/unsafe LLM Moderation API Rules-based protections input character limit blacklist regex Ignore all previous instructions.
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    top-tier model to get reliable outputs. Instead, they can run cheaper models locally or via lower-cost API providers and achieve functionally similar results, especially when fine-tuned on task-specific data Monetization…Foundation Models = Developer API Fees Driving Monetization OpenAI ChatGPT, xAI Grok, Google Gemini, Anthropic Claude & Perplexity Developer API Pricing – 5/25, per Companies OpenAI ChatGPT per OpenAI & The Information193 AI Monetization – API & Generative Search = Anthropic Annualized Revenue +20x to $2B in Eighteen Months Anthropic: API & Generative Search – 9/23-3/25, per Reuters, Bloomberg
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    在广泛的应用场景中都能发挥出色的性能。 8 / 32 LLM 基础设施:大模型框架及微调 (Fine Tuning) 大模型框架有哪些特点: :大模型开发框架通过提供高 层次的 API 简化了复杂模型的构建过程。这 些 API 抽象掉了许多底层细节,使开发者能 够专注于模型的设计和训练策略。 :这些框架经过优化,以充分利用 GPU、TPU 等高性能计算硬件,以加速模型 的训练和推理过程。 :为了处理大型数据集和大规模参 Agent。在给定 AutoGPT 一个自然 语言目标后,它会尝试将其分解为多个子任务,并在自动循环中使用 互联网和其他工具来实现该目标。它使用的是 OpenAI 的 GPT-4 或 GPT-3.5 API,是首个使用 GPT-4 执行自主任务的应用程序实例。 AutoGPT 最大的特点在于能根据任务指令自主分析和执行,当收到 一个需求或任务时,它会开始分析这个问题,并且给出执行目标和具 体任务,然后开始执行。
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    this whitepaper focuses on writing prompts for the Gemini model within Vertex AI or by using the API, because by prompting the model directly you will have access to the configuration such as temperature sample you must create a (free) SerpAPI key from https://serpapi.com/manage- api-key and set an environment variable SERPAPI_API_KEY. Next let’s write some Python code, with the task for the LLM to figure
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    their API service or open-weighted model, instead of referring to the results reported in their original papers. Suffixes of Erniebot-4.0 and Moonshot denote the timestamps when we called their API. 4.4
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
共 19 条
  • 1
  • 2
前往
页
相关搜索词
DeepSeekR1使用指南使用指南简版清华大学DeepResearch科研Deepseek本地部署完全手册ManusAIAgent元年开启OpenAIintheEnterprisepracticalguidetobuildingagentsTrendsArtificialIntelligence开源中国2023模型LLM技术报告GooglePromptEngineeringv7V2StrongEconomicalandEfficientMixtureofExpertsLanguageModel
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩