积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(5)人工智能(5)

语言

全部英语(3)ro(1)zh(1)

格式

全部PDF文档 PDF(5)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 5 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • ro
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    intuitive overview of these benchmarks, we additionally provide our evaluation formats for each benchmark in Appendix G. 3.2.2. Evaluation Results In Table 2, we compare DeepSeek-V2 with several representative code, and math benchmarks. As for Chinese benchmarks, Qwen1.5 72B shows better performance on 14 Benchmark (Metric) # Shots DeepSeek Qwen1.5 Mixtral LLaMA 3 DeepSeek-V2 67B 72B 8x22B 70B Architecture - multiple-choice tasks while DeepSeek-V2 is comparable or better on others. Note that for the CHID benchmark, the tokenizer of Qwen1.5 72B will encounter errors in our evaluation framework, so we leave the
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    “notable” language models shown (per Epoch AI, includes state of the art improvement on a recognized benchmark, >1K citations, historically relevant, with significant use). Source: Epoch AI (5/25) Training Only language models shown (per Epoch AI, includes state of the art improvement on a recognized benchmark, >1K citations, historically relevant, with significant use). Source: Epoch AI (5/25) Training Stanford HAI AI System Performance on MMLU Benchmark Test – 2019-2024, per Stanford HAI Note: The MMLU (Massive Multitask Language Understanding) benchmark evaluates a language model's performance across
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 TVM Meetup Nov. 16th - Linaro

    for more flexibility with the runtime plugins? ○ Integrate TVM codegen into Arm NN? ● CI and benchmark testing for TVM on member hardware platforms ○ Shall we maintain a list of Arm platforms supported
    0 码力 | 7 页 | 1.23 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    oo (embedded i.e. ZC104/Ultra96) https://github.com/Xilinx/ml-suite/blob/master/examples/caffe/Benchmark_README.md Two measurements we track: Latency & Throughput ˃ ML pipeline contains multiple stages
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    
 Evals are built around tasks that measure 
 the quality of the output of a model against 
 a benchmark—is it more accurate? More compliant? Safer? Your key metrics will depend on what matters most
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
共 5 条
  • 1
前往
页
相关搜索词
DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTrendsArtificialIntelligenceTVMMeetupNov16thLinaroXDNN2019OpenAIAIintheEnterprise
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩