积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(8)人工智能(8)

语言

全部英语(4)zh(2)fj(1)日语(1)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 8 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • fj
  • 日语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    Artificial General Intelligence (AGI). In general, the intelligence of an LLM tends to improve as the number of parameters increases, allowing it to exhibit emergent capabilities across various tasks (Wei et Figure 1(a) highlights that, on MMLU, DeepSeek-V2 achieves top-ranking performance with only a small number of activated parameters. In addition, as shown in Figure 1(b), compared with DeepSeek 67B, DeepSeek-V2 ??????????????????????? Attention Feed-Forward Network … 3 4 RMS Norm RMS Norm Transformer Block ×???????????? DeepSeekMoE 0 Input Hidden ???????????????????????? Multi-Head Latent Attention
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    these configurations optimally for your task. Output length An important configuration setting is the number of tokens to generate in a response. Generating more tokens requires more computation from the LLM you are looking for. Putting it all together Choosing between top-K, top-P, temperature, and the number of tokens to generate, depends on the specific application and desired outcome, and the settings chosen word or phrase will, by chance, lead back to a prior state, creating a loop due to the vast number of available options. In both cases, the model's sampling process gets "stuck," resulting in monotonous
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    Leading USA-Based LLM Users 2 Source: Company disclosures Details on Page 55 6MM 2005 2025 Number of Developers, MM 0% 50% 100% Internet LLM 33 Years In 90% @ Year 3 90% @ Year 23 10/22 use). Source: Epoch AI (5/25) Training Dataset Size (Number of Words) for Key AI Models – 1950-2025, per Epoch AI Training Dataset Size – Number of Words +260% / Year AI Technology Compounding = Numbers in… Number of Powerful AI Models *As of 4/25, ‘Large-Scale AI Models’ are generally defined as those with a training compute of 1023 FLOPs or greater, per Epoch AI. Source: Epoch AI (5/25) Number of
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    Invokes a Relay closure. InvokePacked Invokes a TVM compiled kernel. AllocStorage Allocates a storage block. AllocTensor Allocates a tensor value of a certain shape. AllocTensorReg Allocates a tensor based = [tvm.relay.Any(), 3, 224, 224] dtype = "float32" block = get_model('resnet50_v1', pretrained=True) mod, params = relay.frontend.from_mxnet(block, shape={input_name: input_shape}, dtype=dtype) tvm
    0 码力 | 24 页 | 417.46 KB | 6 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    and model co-design - PyTorch operator overhead makes interpreter infeasible - Reduce FLOPs with block-sparsified weight matrices - not a new idea, cf WaveRNN, Sparse Transformers, etc - Reduce precision Related work in Gibiansky (2017), Gray (2019), et al. Image from OpenAI- Add relay.nn.sparse_dense for block-sparse matrix multiplication (~50 lines of TVM IR) - Add relay.reinterpret to implement rational
    0 码力 | 11 页 | 3.08 MB | 6 月前
    3
  • pdf文档 TVM@Alibaba AI Labs

    ce 2 |sep Cooperative Fetching lets threads in the same thread block cooperatively fetch dependent data out_channel WwWly, pm Bly zx) https://docstvm ] Cooperative Fetching Lets threads (work item) in the same thread block (work group) cooperatively fetch dependent data https/www khronos.org/registry/DpenCLspecs/opencl-1
    0 码力 | 12 页 | 1.94 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    "timestamp" "Search agent" "Help the user search the internet and save results if asked.", As the number of required tools increases, consider splitting tasks across multiple agents 
 (see Orchestration) action or output. For example, a step might instruct the agent to ask the user for their order number or to call an API to retrieve account details. Being explicit about the action (and even the wording exit conditions include tool calls, 
 a certain structured output, errors, or reaching a maximum number of turns. 14 A practical guide to building agents For example, in the Agents SDK, agents are started
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 TVM Meetup: Quantization

    Overview • Represent FP32 numbers with a lower-precision INT8 numbers • Integer number stands as a proxy for FP32 number (not a downcast) • Quantized tensor is represented with a scale and a zero point
    0 码力 | 19 页 | 489.50 KB | 6 月前
    3
共 8 条
  • 1
前往
页
相关搜索词
DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelGooglePromptEngineeringv7TrendsArtificialIntelligenceDynamicinTVMFacebookAWSMeetupTalkAlibabaAILabsOpenAIpracticalguidetobuildingagentsQuantization
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩