积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(10)人工智能(10)

语言

全部英语(6)zh(2)[zh](1)中文(简体)(1)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 10 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • [zh]
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    计算平台事业部 。TensorCore AutoCodeGen in TVM “。FP16 Mixed-Precision Training on PAI 。INT8 Inference on PAI-Blade 计算平台事业部 COMPUTING PLATFORM TensorCore AutoCodeGen Background 计算平台事业 Inference on PAI- 引FTe[= PAI-Blade Model Analysis Graph optimization Blade Graph Optimizer TensorRT Customized OptimizeT TAO Compiler (XLA) cuUBLAS/VcuDNNVCUTL, Blade Kernel Lib S, ation 计算平台事业部
    0 码力 | 26 页 | 5.82 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    rights reserved. Amazon/Intel Confidentia Presenter: Zhi Chen, Cody Yu Amazon SageMaker Neo, Deep Engine Science Bring Your Own Codegen to TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates Implement extern operator functions, OR 2. Implement a graph annotator Generate binary/library/engine for the subgraph ● Implement an IR visitor for codegen ● Implement the build logic© 2019, Amazon Implement the Codegen ● Implement a codegen class to accept subgraphs and build binary/library/engine for runtime dispatching ● Codegen path: src/relay/backend/contrib//codegen.cc
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 Trends Artificial Intelligence

    Telegraph Electrification Mass Steel Production Mass Production & Assembly Lines Internal Combustion Engine Flight Synthetic Fertilizer Transistors PCs Internet Smartphones Cloud12 …Technology Compounding at the center of the AI hardware stack. Its GPUs (graphics processing units) became the default engine for training and inference, prized for their ability to handle highly parallel computations at Perplexity Nears Funding at $14 Billion Value’ (5/25) (link) Perplexity is best described as an answer engine. You ask it a question, you get an answer. Except the difference is, all the answers are backed
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 TVM@AliOS

    FacelD Multimodal Interection CPU (ARM、Intel) 1驱动万物智能 Accelerated Op Library / Others Inference Engine DSP (Qualcomm) PART TWO Alios TVM @ ARM CPU AiOS 1驱动万物智能 Alios TVMQOARM CPU 。 Support TFLite 1024 1024, 1024 PART Five Misc AiOS 1驱动万物智能 M Nvidia GTX 1050 。, Integrate other inference engine (like TRT) 2 _ _ 10 9
    0 码力 | 27 页 | 4.86 MB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    its Affiliates. All rights reserved. Presenter: Haichen Shen, Yao Wang Amazon SageMaker Neo, Deep Engine Science Dynamic Model in TVM AWS AI© 2019, Amazon Web Services, Inc. or its Affiliates. All rights
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    previous work experience makes the job 
 a good fit. The Indeed team tested the previous job matching engine against the GPT-powered version with the new, customized context. 
 The performance uplift was significant:
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    •功能范围 •专业技能 •决策权限 约束层: 3. 边界系统 (Boundary System) •伦理规范 •安全限制 •资源约束 操作层: 4. 工作引擎 (Operation Engine) •输入处理 •执行流程 •输出规范 如何使用DeepSeek制作可视化图表? 如何使用DeepSeek制作可视化图表? 角色: Mermaid图表代码生成器 功能: 根据用
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    rule-based approaches fall short. Consider the example of payment fraud analysis. A traditional rules engine works like a checklist, flagging transactions based on preset criteria. In contrast, an LLM agent
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    can face while crafting prompts. Prompt engineering Remember how an LLM works; it’s a prediction engine. The model takes sequential text as an input and then predicts what the following token should be
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    this goal, we implement the following engineering optimizations. (1) Firstly, we propose a hybrid engine that adopts different parallel strategies for training and inference respectively to achieve higher
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
共 10 条
  • 1
前往
页
相关搜索词
PAITVMMeetupShanghai20191116BringYourOwnCodegentoTrendsArtificialIntelligenceAliOSDynamicModelinOpenAIAItheEnterprise清华华大大学清华大学第二DeepSeek赋能职场practicalguidebuildingagentsGooglePromptEngineeringv7V2StrongEconomicalandEfficientMixtureofExpertsLanguage
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩