积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(11)人工智能(11)

语言

全部英语(5)zh(3)日语(1)ro(1)中文(简体)(1)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 11 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 日语
  • ro
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Google 《Prompt Engineering v7》

    data so they can understand a prompt and generate an answer. But LLMs aren’t perfect; the clearer your prompt text, the better it is for the LLM to predict the next likely text. Additionally, specific few-shot prompt example, let’s use the same gemini-pro model configuration settings as before, other than increasing the token limit to accommodate the need for a longer response. Goal Parse pizza orders ways. It changes the final prompt doing the task by utilizing more knowledge in the LLM’s parameters than would otherwise come into play when the LLM is prompted directly. It can help to mitigate biases
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 Trends Artificial Intelligence

    directly or via your work, and are driving technology forward.• Seem Like Change Happening Faster Than Ever? Yes, It Is • AI User + Usage + CapEx Growth = Unprecedented • AI Model Compute Costs High OutlineWeekly Active Users, MM 4 Charts Paint Thousands of Words… Seem Like Change Happening Faster Than Ever? Yes, It Is AI User + Usage + CapEx Growth = Unprecedented Developers in Leading Chipmaker’s improvements. As athletes continue to wow us and break records, their talent is increasingly enhanced by better data / inputs / training. The same is true for businesses, where computers are ingesting massive
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    Latent Attention (MLA). Equipped with low-rank key-value joint compression, MLA achieves better performance than MHA, but requires a significantly smaller amount of KV cache. We introduce its architecture small amount of KV cache, equal to GQA with only 2.25 groups, but can achieve stronger performance than MHA. 8 Attention Mechanism KV Cache per Token (# Element) Capability Multi-Head Attention (MHA) to ?ℎ 2 . So, its KV cache is equal to GQA with only 2.25 groups, but its performance is stronger than MHA. 2.2. DeepSeekMoE: Training Strong Models at Economical Costs 2.2.1. Basic Architecture For
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    access information faster and reduce the time spent on repetitive tasks, they could offer more and better insights to clients.
 They started with three model evals: 01 Language translation Measuring the customer interaction means superior experiences for our customers at better prices, more interesting challenges for our employees, and better returns for our investors. Sebastian Siemiatkowski Co-Founder internal FAQs—the model delivers more 
 relevant, on-brand results. Domain expertise Fine-tuned models better understand your industry’s terminology, style, and context. Consistent tone and style For a retailer
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 TVM: Where Are We Going

    44 Large MatMul BatchConv Small MatMul BatchMatMul CuDNN w/ TensorCores tvm w/ TensorCores 1.4x better on emerging workloads Transformer related workloads Credit: Siyuan FengWhere are we goingUnified Accelerator • Runtime JIT compile accelerator micro code • Support heterogenous devices, 10x better than CPU on the same board. • Move hardware complexity to software HW-SW Blueprint for Flexible
    0 码力 | 31 页 | 22.64 MB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    Providing smaller, clearer steps from dense resources 
 helps minimize ambiguity and helps the model better 
 follow instructions. Define clear actions Make sure every step in your routine corresponds to a managing complexity without switching to a multi-agent framework is to use prompt templates. Rather than maintaining numerous individual prompts for distinct use cases, use a single flexible base prompt significantly simplifying maintenance and evaluation. As new use cases arise, you can update variables rather than rewriting entire workflows. Unset 1 """ You are a call center agent. You are interacting with {{user_first_name}}
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    such as silicon (Si, 4200 mA h g-1) show extremely high theoretical capacity, nearly 10 times higher than the capacity of commercial graphite anodes (372 mA h g-1). Unfortunately, these types of materials voltage, high energy density, and long cycle life. Nevertheless, to meet the increasing demand for even better electrochemical performance, researchers have begun to explore sustainable anode materials. The
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    overhead of writing warp-level schedule for TensorCore 。Work at the scheduling level: the less the better 。 The requirement of familiarity with WMMA API “Unified matmul schedule for GPU 。 Maintainability
    0 码力 | 26 页 | 5.82 MB | 5 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    Speech Synthesis - WaveRNN-style model architecture - Autoregressive sampling net running at faster than real-time - Compute split between GRU units and FC layers - 24kHz sampling frequency requires 40us
    0 码力 | 11 页 | 3.08 MB | 5 月前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Subgraph 1 Parallel Subgraphs Post-Processing Pre-Processing FPGA or CPU FPGA CPU CPU FPGA - More than supported/not supported, pattern matching graph colorization - Choices how to partition especially
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
GooglePromptEngineeringv7TrendsArtificialIntelligenceDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelOpenAIAIintheEnterpriseTVMWhereAreWeGoingpracticalguidetobuildingagents清华大学DeepResearch科研PAIMeetupShanghai20191116FacebookAWSTalkXDNNNov2019
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩