 Trends Artificial Intelligence
for Amazon (i.e. excludes Amazon retail CapEx). AWS CapEx estimated per Morgan Stanley – equals AWS net additions to property & equipment less finance leases and obligations. Global data generation figures for Amazon (i.e. excludes Amazon retail CapEx). AWS CapEx estimated per Morgan Stanley – equals AWS net additions to property & equipment less finance leases and obligations. Source: Capital IQ (3/25), for Amazon (i.e. excludes Amazon retail CapEx). AWS CapEx estimated per Morgan Stanley – equals AWS net additions to property & equipment less finance leases and obligations. Source: Capital IQ (3/25),0 码力 | 340 页 | 12.14 MB | 4 月前3 Trends Artificial Intelligence
for Amazon (i.e. excludes Amazon retail CapEx). AWS CapEx estimated per Morgan Stanley – equals AWS net additions to property & equipment less finance leases and obligations. Global data generation figures for Amazon (i.e. excludes Amazon retail CapEx). AWS CapEx estimated per Morgan Stanley – equals AWS net additions to property & equipment less finance leases and obligations. Source: Capital IQ (3/25), for Amazon (i.e. excludes Amazon retail CapEx). AWS CapEx estimated per Morgan Stanley – equals AWS net additions to property & equipment less finance leases and obligations. Source: Capital IQ (3/25),0 码力 | 340 页 | 12.14 MB | 4 月前3
 TVM工具组直接支持 caffe 让大家更方便尝试 caffe 资源。绝赞招聘中 当前进度 无 caffe 依赖 from_caffe 直接导入 caffe 模型文件,不需要预先安装 caffe 。 net 已测试网络:alexnet / densenet121 / inception v1 / inception v3 / inception v4 / mobilenet v1 / mobilenet 命令行工具 将 caffe 模型转换的功能,通过一组命令行工具提供,命令行工具支持 windows / linux 平台。 支持更多 caffe op / net 随着客户需求和社区发展,提供更多的 caffe 分支变种的 op / net 支持。绝赞招聘中 THANKS0 码力 | 6 页 | 326.80 KB | 5 月前3 TVM工具组直接支持 caffe 让大家更方便尝试 caffe 资源。绝赞招聘中 当前进度 无 caffe 依赖 from_caffe 直接导入 caffe 模型文件,不需要预先安装 caffe 。 net 已测试网络:alexnet / densenet121 / inception v1 / inception v3 / inception v4 / mobilenet v1 / mobilenet 命令行工具 将 caffe 模型转换的功能,通过一组命令行工具提供,命令行工具支持 windows / linux 平台。 支持更多 caffe op / net 随着客户需求和社区发展,提供更多的 caffe 分支变种的 op / net 支持。绝赞招聘中 THANKS0 码力 | 6 页 | 326.80 KB | 5 月前3
 Facebook -- TVM AWS Meetup Talkarchitecture - Autoregressive sampling net running at faster than real-time - Compute split between GRU units and FC layers - 24kHz sampling frequency requires 40us sampling net runtime - First PyTorch model model used a 3,400us sampling net runtime Image from LPCNetExit, Pursued By A Bear - 3400us (baseline), 40us (target) - 85x speedup - Uh ohEnter, TVM and model co-design - PyTorch operator overhead0 码力 | 11 页 | 3.08 MB | 5 月前3 Facebook -- TVM AWS Meetup Talkarchitecture - Autoregressive sampling net running at faster than real-time - Compute split between GRU units and FC layers - 24kHz sampling frequency requires 40us sampling net runtime - First PyTorch model model used a 3,400us sampling net runtime Image from LPCNetExit, Pursued By A Bear - 3400us (baseline), 40us (target) - 85x speedup - Uh ohEnter, TVM and model co-design - PyTorch operator overhead0 码力 | 11 页 | 3.08 MB | 5 月前3
 DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language ModelIn 9th International Conference on Learning Representations, ICLR 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=qrwe7XHTmYb. H. Li, Y. Zhang, F. Koto, Y. Yang, H. Zhao, Y. Gong, N. Duan In 5th International Conference on Learning Representations, ICLR 2017. OpenReview.net, 2017. URL https: //openreview.net/forum?id=B1ckMDqlg. J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Roformer:0 码力 | 52 页 | 1.23 MB | 1 年前3 DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language ModelIn 9th International Conference on Learning Representations, ICLR 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=qrwe7XHTmYb. H. Li, Y. Zhang, F. Koto, Y. Yang, H. Zhao, Y. Gong, N. Duan In 5th International Conference on Learning Representations, ICLR 2017. OpenReview.net, 2017. URL https: //openreview.net/forum?id=B1ckMDqlg. J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Roformer:0 码力 | 52 页 | 1.23 MB | 1 年前3
 开源中国 2023 大模型(LLM)技术报告一番,每年 训练 AI 模型所需算力增长幅度高达 10 倍 (图源:https://openai.com/research/ai-and-compute) 31 / 32 oschina.net gitee.com 公众号 视频号 关注我们,开源开发者圈一网打尽 32 / 320 码力 | 32 页 | 13.09 MB | 1 年前3 开源中国 2023 大模型(LLM)技术报告一番,每年 训练 AI 模型所需算力增长幅度高达 10 倍 (图源:https://openai.com/research/ai-and-compute) 31 / 32 oschina.net gitee.com 公众号 视频号 关注我们,开源开发者圈一网打尽 32 / 320 码力 | 32 页 | 13.09 MB | 1 年前3
 Google 《Prompt Engineering v7》Back: Evoking Reasoning via Abstraction in Large Language Models. Available at: https://openreview.net/pdf?id=3bq3jsvcQ1 9. Wei, J., et al., 2023, Chain of Thought Prompting. Available at: https://arxiv0 码力 | 68 页 | 6.50 MB | 6 月前3 Google 《Prompt Engineering v7》Back: Evoking Reasoning via Abstraction in Large Language Models. Available at: https://openreview.net/pdf?id=3bq3jsvcQ1 9. Wei, J., et al., 2023, Chain of Thought Prompting. Available at: https://arxiv0 码力 | 68 页 | 6.50 MB | 6 月前3
 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单综述生成:根据智能分析结果,平台自动生成结构化的文献综述文本内容和可视化图表,用户可直接获取 完整的综述报告,也可根据需要进行自定义调整,如综述主题、目标、参数等。 知网研学平台官网:https://aiplus.cnki.net/sumup/sumup  输入关键词:进入官网后,在搜索框键入关键词进行文献检索。  选取文章:勾选想要分析的20篇文献。  综述生成:点击生成综述,等待2-3分钟即可下载综述报告。0 码力 | 85 页 | 8.31 MB | 8 月前3 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单综述生成:根据智能分析结果,平台自动生成结构化的文献综述文本内容和可视化图表,用户可直接获取 完整的综述报告,也可根据需要进行自定义调整,如综述主题、目标、参数等。 知网研学平台官网:https://aiplus.cnki.net/sumup/sumup  输入关键词:进入官网后,在搜索框键入关键词进行文献检索。  选取文章:勾选想要分析的20篇文献。  综述生成:点击生成综述,等待2-3分钟即可下载综述报告。0 码力 | 85 页 | 8.31 MB | 8 月前3
共 7 条
- 1













