积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(13)人工智能(13)

语言

全部中文(简体)(9)中文(简体)(2)英语(1)zh(1)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.052 秒,为您找到相关结果约 13 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 英语
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    t v B 4 G 0 G p y 8 U I q e T 9 M 6 Deepseek的能力图谱 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场 景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 决策支持 文体转换 个性化推荐 翻译与转换 多语言翻译 异常检测 专区的技术参数,用数据列表形式 呈现。” 关键技巧: p 数据嫁接:若缺乏具体数据,直接让AI生成合理虚构值(标注“示例”规避风险): p “假设园区占地500亩,日均处理包裹量50万件,请计算自动化分拣设备的配置数量,用表格展示。” p 模板复制:对同类章节(如3.1/3.2/3.3)使用相同指令模板,仅替换关键词。 p 强制格式:要求AI输出带编号小标题、分点、表格的内容,直接粘贴后即显“专业感”。 生命线工程: 孕妇救援通道: ✓ 自动生成医疗档案二维码 ✓ 无人机勘察可行路线 ✓ 协调民间救援队GPS定位 老人转移方案: ✓ 调取智能手环历史活动轨迹 ✓ 社区志愿者网络即时广播 ③ 企业级应急: 启动边缘计算节点转移关键数据 生成政府灾情报告模板(自动填充损失评估) ④ 社会协作: 创建临时物资交换区块链账本 多语言求援信息自动生成(对接领事馆系统) 技术红利: 救援响应速度提升3.2倍,资产损失减少78%,危机持续时间压
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1  高效推理:专注于低延迟和 高吞吐量,适合实时应用。  轻量化设计:模型结构优化, 资源占用少,适合边缘设备 和移动端。  多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5  垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。  长文本处理:擅长处理长文本 , 对 模 型 进 行 最 终 的 强 化 学 习 , 以 对 齐 人 类 偏好。 降本提能:架构创新,技术增效 DeepSeek通过架构创新和模型蒸馏技术,在提升模型性能的同时,显著降低计算成本和内存占用。这些技术不仅在 长文本处理、代码生成、数学推理等任务中表现出色,还为大模型的轻量化和实际应用提供了有力支持。  模型蒸馏技术 DeepSeek采用模型蒸馏技术,通过将知识从大型复杂模型 系列和Llama 系列  架构创新 通过将模型划分为多个专家模块,实 现高效计算和推理。DeepSeek通过 无辅助损失的自然负载均衡和共享专 家机制,解决了专家模块工作量不平 衡的问题。 混合专家(MoE)架构 通过低秩压缩减少推理时的内存占用, 同时保持与传统多头注意力(MHA) 相当的性能。MLA在训练中减少了 内存和计算开销,在推理中降低了 KV缓存占用空间。 多头潜在注意力(MLA)机制
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    计算平台事业部 COMPUTING PLATFORM TensorCore AutocCodeGen and Mixed-Precision Training/Inference PAI (Platform of AD Alibaba Cloud Intelligence Outline 计算平台事业部 。TensorCore AutoCodeGen in TVM “。FP16 Mixed-Precision Training on PAI 。INT8 Inference on PAI-Blade 计算平台事业部 COMPUTING PLATFORM TensorCore AutoCodeGen Background 计算平台事业 。TensorCore 。A revolutionary technology that delivers groundbreaking AI performance. 。 Performs /mxeo-Drecsion matrix multiply and accumulate in a single operation. Background
    0 码力 | 26 页 | 5.82 MB | 5 月前
    3
  • pdf文档 国家人工智能产业综合标准化体系建设指南(2024版)

    的人工 智能软件开源基础框架,人工智能系统能效评价,人工智能与资 7 源利用、碳排放、废弃部件处置等标准。 (二)基础支撑标准 基础支撑标准主要包括基础数据服务、智能芯片、智能传感 器、计算设备、算力中心、系统软件、开发框架、软硬件协同等 标准。 1. 基础数据服务标准。规范人工智能研发、测试、应用等 过程中涉及数据服务的要求,包括数据采集、数据标注、数据治 理、数据质量等标准。 方法、性能指标和评价方法等标准。 4. 计算设备标准。规范人工智能加速卡、人工智能加速模 组、人工智能服务器等计算设备,及使能软件的技术要求和测试 方法,包括人工智能计算设备虚拟化方法,人工智能加速模组接 口协议和测试方法,及使能软件的访问协议、功能、性能、能效 的测试方法和运行维护要求等标准。 5. 算力中心标准。规范面向人工智能的大规模计算集群、 新型数据中心、智算中心、基础网络通信、算力网络、数据存储 运行时库及调试工具、人工智能软硬件平台计算性能等标准。 7. 开发框架标准。规范人工智能开发框架相关的技术要求, 包括开发框架的功能要求,与应用系统之间的接口协议、神经网 络模型表达和压缩等标准。 8. 软硬件协同标准。规范智能芯片、计算设备等硬件与系 统软件、开发框架等软件之间的适配要求,包括智能芯片与开发 框架的适配要求、人工智能计算任务调度、分布式计算等软硬件 协同任务的交互协议、执行效率和协同性能等标准。
    0 码力 | 13 页 | 701.84 KB | 1 年前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    编程  插件、IDE、终端  代码生成工具 编程语言 3 / 32 LLM 技术背景 Transformer 架构和预训练与微调策略是 LLM 技术的核心,随着大规模语言数据集的可用性和计算能 力的提升,研究者们开始设计更大规模的神经网络,以提高对语言复杂性的理解。 GPT (Generative Pre-trained Transformer) 的提出标志着 LLM 技术的飞速发展,其预训练和微调的 32 LLM 基础设施:向量数据库/数据库向量支持 向量数据库是专门用于存储和检索向量数据的数据库,它可以为 LLM 提供高效的存储和检索能力。通过数据向量化,实现了 在向量数据库中进行高效的相似性计算和查询。 根据向量数据库的的实现方式,可以将向量数据库大致分为两类: 原生的向量数据库专门为存储和检索向量而设计, 所管理的数据是基于对象或数据点的向量表示进行 组织和索引。 包括 等均属于原生向量数据库。 :大模型开发框架通过提供高 层次的 API 简化了复杂模型的构建过程。这 些 API 抽象掉了许多底层细节,使开发者能 够专注于模型的设计和训练策略。 :这些框架经过优化,以充分利用 GPU、TPU 等高性能计算硬件,以加速模型 的训练和推理过程。 :为了处理大型数据集和大规模参 数网络,这些框架通常设计得易于水平扩展, 支持在多个处理器或多个服务器上并行处理。 :它们提供工具来有效地加 载、处理和迭代大型数据集,这对于训练大
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    2022全球人工智能技术创新大赛-商品标题实体识别 一等奖 第十八届中国计算语言学大会-小牛杯中文幽默计算 一等奖 第十届全国社会媒体处理大会-中文隐式情感分析 一等奖 2021全球开放数据应用创新大赛-基于文本挖掘的企业隐患排查质量分析模型 第一名 2021中国计算机学会大数据与计算智能大赛-“千言〞 问题匹配鲁棒性评测 第一名 2021年全国知识图谱与语义计算大会-医疗科普知识答非所问识别 第一名 互联网虛
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 5. 执行需求 需完成具体操作(代码/ 计算/流程) 任务 + 步骤约束 + 输出格 式 自主优化步骤,兼顾效率 与正确性 严格按指令执行,无自主优化 提示语示例 决策需求 验证性需求 "为降低物流成本,现有两种方案: ①自建区域仓库(初期投入高,长期成本低) ②与第三方合作(按需付费,灵活性高) 请根据ROI计算模型,对比5年内的总成本并推荐最优 解。" 解。" �实战技巧: "以下是某论文结论:'神经网络模型A优于传统方法B'。 请验证: ① 实验数据是否支持该结论; ② 检查对照组设置是否存在偏差; ③ 重新计算p值并判断显著性。" �实战技巧: 分析需求 "分析近三年新能源汽车销量数据(附CSV),说明: ① 增长趋势与政策关联性; ② 预测2025年市占率,需使用ARIMA模型并解释参数 选择依据。"
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 5. 执行需求 需完成具体操作(代码/ 计算/流程) 任务 + 步骤约束 + 输出格 式 自主优化步骤,兼顾效率 与正确性 严格按指令执行,无自主优化 提示语示例 决策需求 验证性需求 "为降低物流成本,现有两种方案: ①自建区域仓库(初期投入高,长期成本低) ②与第三方合作(按需付费,灵活性高) 请根据ROI计算模型,对比5年内的总成本并推荐最优 解。" 解。" �实战技巧: "以下是某论文结论:'神经网络模型A优于传统方法B'。 请验证: ① 实验数据是否支持该结论; ② 检查对照组设置是否存在偏差; ③ 重新计算p值并判断显著性。" �实战技巧: 分析需求 "分析近三年新能源汽车销量数据(附CSV),说明: ① 增长趋势与政策关联性; ② 预测2025年市占率,需使用ARIMA模型并解释参数 选择依据。"
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    存储: 20GB - 内存: 32GB(M3 Max) - 存储: 20GB 复杂推理、技术⽂档⽣ 成 32B+ 企业级部署(需多卡并联) 暂不⽀持 科研计算、⼤规模数据 处理 2. 算⼒需求分析 模型 参数规 模 计算精 度 最低显存需 求 最低算⼒需求 DeepSeek-R1 (671B) 671B FP8 ≥890GB 2*XE9680(16*H20 GPU) 国产硬件推荐配置 模型参数 推荐⽅案 适⽤场景 1.5B 太初T100加速卡 个⼈开发者原型验证 14B 昆仑芯K200集群 企业级复杂任务推理 32B 壁彻算⼒平台+昇腾910B集群 科研计算与多模态处理 四、云端部署替代⽅案 1. 国内云服务商推荐 平台 核⼼优势 适⽤场景 硅基流动 官⽅推荐API,低延迟,⽀持多模态模型 企业级⾼并发推理 腾讯云 ⼀键部署+限时免费体验,⽀持VPC私有化
    0 码力 | 7 页 | 932.77 KB | 8 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    推理能力难以泛化,成本高昂 全面超越人类的人工智能在逻辑上不成立政企、创业者必读 15 DeepSeek出现之前的十大预判 之二 慢思考成为新的发展模式  大模型发展范式正在从「预训练」转向「后训练」和「推理时计算」  大模型厂商都在探索慢思考、思维链技术政企、创业者必读 DeepSeek出现之前的十大预判 之三 模型越做越专  除了少数科技巨头,大多数公司都专注于做专业大模型  MoE架构盛行,本质是多个专家模型组成一个大模型 AI安全:实现安全的「自动驾驶」 46政企、创业者必读 大模型的六大能力 47 基本 能力 业务 能力 创新 能力 赋能 未来产业 创意 能力 赋能企业 数转智改 数学计算 语义理解 逻辑推理 语言翻译 文本创作 自动驾驶 具身智能 1 2 4 5 知识问答 代码编程 文本生成 多轮对话 图像生成 视频生成 音频生成 A I 数字人 生物制药 新材料研究 烟气余热回收控制 • 部署工艺模型分析诊断 • 能源诊断分析 • 建设质量工艺动态设计 优化 • 堆堵料异常检测 • 炼铁原料混匀过程调度 优化 • 风机风压参数实时捕捉 和分析检验 • ·计算最佳工艺参数 • 炼钢工序物料属性检测 • ·精炼钢水温度连续测量 • 炼钢设备远程监控及故障 诊断 • ·转炉炉体缺陷检测 • 钢水液面检测 • 钢包水口位置定位 • 钢包顶升高度预测
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
清华华大大学清华大学普通通人普通人如何抓住DeepSeek红利DeepResearch科研PAITVMMeetupShanghai20191116国家人工智能人工智能产业综合标准标准化体系建设指南2024开源中国2023模型LLM技术报告第二赋能职场入门精通20250204DeepseekR1本地部署完全手册周鸿祎演讲我们带来创业机会360202502
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩