积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(11)人工智能(11)

语言

全部中文(简体)(9)中文(简体)(2)

格式

全部PDF文档 PDF(11)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 11 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek从入门到精通(20250204)

    请分析当前瓶颈并提出3种方 案。” ✅ 激发模型深层推理 ❌ 需清晰定义需求边界 混合模式 结合需求描述与关键 约束条件 平衡灵活性与可控性 “设计一个杭州三日游计划, 要求包含西湖和灵隐寺,且 预算控制在2000元内。” ✅ 兼顾目标与细节 ❌ 需避免过度约束 启发式提问 通过提问引导模型主 动思考(如“为什 么”“如何”) 探索性问题、需模型解 释逻辑 “为什么选择梯度下降法解 “请分三步推导勾股定理,参考: 1. 画直角三角形…” 直接提问(易跳过关键步骤) 创意写作 推理模型 鼓励发散性,设定角色/风格 “以海明威的风格写一个冒险故事” 过度约束逻辑(如“按时间顺序列出”) 通用模型 需明确约束目标,避免自由发挥 “写一个包含‘量子’和‘沙漠’ 的短篇小说,不超过200字” 开放式指令(如“自由创作”) 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 设计/方案) 主题 + 风格/约束 + 创新 方向 结合逻辑框架生成结构化 创意 自由发散,依赖示例引导 4. 验证需求 需检查逻辑自洽性、数 据可靠性或方案可行性 结论/方案 + 验证方法 + 风险点 自主设计验证路径并排查 矛盾 简单确认,缺乏深度推演 5. 执行需求 需完成具体操作(代码/ 计算/流程) 任务 + 步骤约束 + 输出格 式 自主优化步骤,兼顾效率
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    请分析当前瓶颈并提出3种方 案。” ✅ 激发模型深层推理 ❌ 需清晰定义需求边界 混合模式 结合需求描述与关键 约束条件 平衡灵活性与可控性 “设计一个杭州三日游计划, 要求包含西湖和灵隐寺,且 预算控制在2000元内。” ✅ 兼顾目标与细节 ❌ 需避免过度约束 启发式提问 通过提问引导模型主 动思考(如“为什 么”“如何”) 探索性问题、需模型解 释逻辑 “为什么选择梯度下降法解 “请分三步推导勾股定理,参考: 1. 画直角三角形…” 直接提问(易跳过关键步骤) 创意写作 推理模型 鼓励发散性,设定角色/风格 “以海明威的风格写一个冒险故事” 过度约束逻辑(如“按时间顺序列出”) 通用模型 需明确约束目标,避免自由发挥 “写一个包含‘量子’和‘沙漠’ 的短篇小说,不超过200字” 开放式指令(如“自由创作”) 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 设计/方案) 主题 + 风格/约束 + 创新 方向 结合逻辑框架生成结构化 创意 自由发散,依赖示例引导 4. 验证需求 需检查逻辑自洽性、数 据可靠性或方案可行性 结论/方案 + 验证方法 + 风险点 自主设计验证路径并排查 矛盾 简单确认,缺乏深度推演 5. 执行需求 需完成具体操作(代码/ 计算/流程) 任务 + 步骤约束 + 输出格 式 自主优化步骤,兼顾效率
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    致 的误解和错误。通过DeepSeek的数据分析功能,新员 工可以更深入地理解行业动态和公司运营,做出更明智 的决策。 成本更低: 减少了对培训资源的依赖,新员工可以通过DeepSeek 自主学习,降低培训成本。通过提高工作效率,减少了 人力资源的浪费,降低了整体运营成本。 场景3:日常客户沟通与问题反馈处理 常见问题: 与甲方客户的沟通效率低,信息不对称,导致响应不及时或错误 场景:在 场景3:突发事件应急管理与跨界协调 情景还原:台风突袭导致孕期34周妻子被困郊区、数据中心备用电源仅能维持4小时、急需转移独居失智老 人、社区抢购导致物资短缺 DeepSeek应急协议: ① 资源热力图: 实时整合气象局数据/道路塌方报告/医院接诊状态 物资预测算法锁定3公里内未饱和便利店 ② 生命线工程: 孕妇救援通道: ✓ 自动生成医疗档案二维码 ✓ 无人机勘察可行路线 ✓ 协调民间救援队GPS定位 2.避免争论:专注于解决问题,而不是证明谁对谁错。 3.寻找共同目标:强调大家都希望家庭和谐,遗产分配公平。 4.提前准备:在沟通前,整理好自己的观点和感受,避免情绪化表达。 5.引入专业资源:如需要,可以寻求律师或家庭顾问的帮助,确保遗产分配的合法性和 公正性。 提示语策略差异 1 推理模型 2
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    且对结果有明确要求 操作路径多元、开放, 且对结果没有明确要求 DeepSeek 两种模型对比(5R) 维度 V3模型 R1模型 Regulation (规范性) 强规范约束 (操作路径明确) 弱规范约束 (操作路径开放) Result (结果导向) 目标确定性高 (结果可预期) 目标开放性高 (结果多样性) Route (路径灵活性) 线性路径 (流程标准化) 网状路径 (多路径探索) • 不需要思维链提示 • 不需要结构化提示词 • 不需要给示例 • 不需要做太多解释 • …… 另一种路径:DeepSeek R1 作为智能体 ü 角色 ü 功能 ü 技能 ü 约束 ü 工作流程 ü 输出格式 "全维度智能体提示框架" (Comprehensive Agent Prompting Framework, CAP Framework) 核心层: 1.身份定义 •角色属性 •专业背景 •交互特征 执行层: 2. 能力矩阵 (Capability Matrix) •功能范围 •专业技能 •决策权限 约束层: 3. 边界系统 (Boundary System) •伦理规范 •安全限制 •资源约束 操作层: 4. 工作引擎 (Operation Engine) •输入处理 •执行流程 •输出规范 如何使用DeepSeek制作可视化图表?
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1  高效推理:专注于低延迟和 高吞吐量,适合实时应用。  轻量化设计:模型结构优化, 资源占用少,适合边缘设备 和移动端。  多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5  垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。 长文本处理:擅长处理长文本 和复杂文档,适合专业场景。  定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini  小型化设计:轻量级模型, 适合资源有限的环境。  快速响应:优化推理速度, 适合实时交互场景。  通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 爬虫数据采集 1、阅读网页源代码,提取特定网页内容; 中小企业AI定制化服务:为中小企业提 供定制化的AI解决方案,如智能客服、营销 和办公工具,提升企业竞争力。 • 开源AI教育平台:借助DeepSeek R1 的低成本特性,创建开源AI教育平台,提供 免费课程和实验资源,促进AI教育普及。 • 智能编程教育助手:为编程学生提供实 时编程指导,自动生成代码示例,帮助解决 编程难题。 • 自动化代码审查工具:自动审查代码, 发现潜在问题并提供优化建议,提升开发效
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    Tuning) 大模型框架指专门设计用于构建、训练和部署大型机器 学习模型和深度学习模型的软件框架。这些框架提供了 必要的工具和库,使开发者能够更容易地处理大量的数 据、管理巨大的网络参数量,并有效地利用硬件资源。 微调(Fine Tuning)是在大模型框架基础上进行的一个 关键步骤。在模型经过初步的大规模预训练后,微调是 用较小、特定领域的数据集对模型进行后续训练,以使 其更好地适应特定的任务或应用场景。这一步骤使得通 相比前边的大模型框架和微调,一言以蔽之: 、 11 / 32 LLM 基础设施:大模型训练平台与工具 大模型训练平台与工具根据其性质不同,可分为以下几类: 这些平台提供了从模型开发到部署的综合解决方案,包括计算资源、 数据存储、模型训练和部署服务。它们通常提供易于使用的界面,支 持快速迭代和大规模部署。Amazon SageMaker、Google Cloud AI Platform 和 Microsoft 工具,如云原生构建多模态AI应用的工具 Jina,嵌入式数据库 txtai 等。 25 / 32 LLM 的工具、平台和资源 另一个视角来看,在大模型繁荣发展的背后,少不了工 具和平台的发力,如 LLMOps 平台、大模型聚合平台 以及相关的开发工具,此外还有它们所依赖的最重要的 资源——算力。 在这些工具、平台和资源的有力支撑下,大模型才得以 一步一个台阶,引领全球开发者步入一个技术新时代。 算力 大模型聚合平台
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 人工智能安全治理框架 1.0

    人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 泛在算力节点,不同类型计算资源,面临算力资源恶意消耗、算力层面风险跨 边界传递等风险。 (c)供应链安全风险。人工智能产业链呈现高度全球化分工协作格局。 但个别国家利用技术垄断和出口管制等单边强制措施制造发展壁垒,恶意阻断 全球 生产关系的大幅改变,加速重构传统行业模式,颠覆传统的就业观、生育观、 教育观,对传统社会秩序的稳定运行带来挑战。 (c)未来脱离控制的风险。随着人工智能技术的快速发展,不排除人工 智能自主获取外部资源、自我复制,产生自我意识,寻求外部权力,带来谋求 与人类争夺控制权的风险。 4. 技术应对措施 针对上述安全风险,模型算法研发者、服务提供者、系统使用者等需从 训练数据、算力设施、模型算法、产品服务、应用场景各方面采取技术措施予 。- 9 - 人工智能安全治理框架 (c)加强人工智能算力平台和系统服务的安全建设、管理、运维能力, 确保基础设施和服务运行不中断。 (d)对于人工智能系统采用的芯片、软件、工具、算力和数据资源,应 高度关注供应链安全。跟踪软硬件产品的漏洞、缺陷信息并及时采取修补加固 措施,保证系统安全性。 4.2 针对人工智能应用安全风险 4.2.1 网络域风险应对 (a)建立安全防护机制,防止模型运行过程中被干扰、篡改而输出不可
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    钢包吊钩姿态监测 • 钢包温度远程智能监测 • 钢包坐罐过程识别 • 钢包挂罐过程识别 • ·转炉吹氧自动控制 • 炼钢现场生产安全态势感知与预警 • 炼钢过程智能调度 • 能源动态管控 • 碳资源智能分析 • 电弧炉炼钢尾气检测与控制 • 钢包内渣状态识别 • 渣罐残留水识别 • 钢包挂钩挂实确认 • 钢包内渣状态识别 • 渣罐残留水识别 • 钢包挂钩挂实确认 • 中间包长水口区域 板材:冷床钢板优化排布 • 质量缺陷预分析及预警 • 质量评价模型优化 • 冷态钢管缺陷检测 • 厂区智慧物流 • 生产计划智能优化 • 炉次计划优化算法(智能排产) • 综合物流调度 • 碳资源交易与碳金融 • 中鑫联云商平台风险控制 场景选择示例——钢铁大模型 57政企、创业者必读 有了场景之后,只有DeepSeek还不够 大模型就像培养器中的大脑 会理解、能问答、能生成,但是没有记忆能力,不会使用工具,
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 TVM工具组

    前端 当前各大芯片厂商的部署工具大多数都支持,支持 caffe 前端有利于提高竞争力。 开源社区 存量的开源 caffe 网络模型众多,TVM 直接支持 caffe 让大家更方便尝试 caffe 资源。绝赞招聘中 当前进度 无 caffe 依赖 from_caffe 直接导入 caffe 模型文件,不需要预先安装 caffe 。 net 已测试网络:alexnet / densenet121
    0 码力 | 6 页 | 326.80 KB | 5 月前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    fallocate -l 100G /swapfile sudo chmod 600 /swapfile sudo mkswap /swapfile sudo swapon /swapfile 七、附录:技术⽀持与资源 华为昇腾:昇腾云服务 沐曦GPU:免费API体验 李锡涵博客:完整部署教程 结语 Deepseek R1 的本地化部署需极⾼的硬件投⼊与技术⻔槛,个⼈⽤户务必谨慎,企业⽤户应充 分评估需
    0 码力 | 7 页 | 932.77 KB | 8 月前
    3
共 11 条
  • 1
  • 2
前往
页
相关搜索词
DeepSeek入门精通20250204清华华大大学清华大学普通通人普通人如何抓住红利第二赋能职场DeepResearch科研开源中国2023模型LLM技术报告人工智能人工智能安全治理框架1.0周鸿祎演讲我们带来创业机会360202502TVM工具DeepseekR1本地部署完全手册
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩