人工智能安全治理框架 1.0全国网络安全标准化技术委员会 2024年9月 人工智能 安全治理框架1. 人工智能安全治理原则 …………………………………… 1 2. 人工智能安全治理框架构成 ……………………………… 2 3. 人工智能安全风险分类 …………………………………… 3 3.1 人工智能内生安全风险 ……………………………… 3 3.2 人工智能应用安全风险 ……………………………… 5 4. 技术应对措施 针对人工智能内生安全风险 ………………………… 7 4.2 针对人工智能应用安全风险 ………………………… 9 5. 综合治理措施 ……………………………………………… 10 6. 人工智能安全开发应用指引 ……………………………… 12 6.1 模型算法研发者安全开发指引 ……………………… 12 6.2 人工智能服务提供者安全指引 ……………………… 13 6.3 重点领域使用者安全应用指引 6.4 社会公众安全应用指引 ……………………………… 15 目 录- 1 - 人工智能安全治理框架 人工智能是人类发展新领域,给世界带来巨大机遇,也带来各类风险挑战。 落实《全球人工智能治理倡议》,遵循“以人为本、智能向善”的发展方向,为 推动政府、国际组织、企业、科研院所、民间机构和社会公众等各方,就人工 智能安全治理达成共识、协调一致,有效防范化解人工智能安全风险,制定本 框架。0 码力 | 20 页 | 3.79 MB | 1 月前3
DeepSeek从入门到精通(20250204)团队 :余梦珑博士后 清华大学新闻与传播学院 新媒体研究中心 元宇宙文化实验室 • Deepseek是什么? • Deepseek能够做什么? • 如何使用Deepseek? DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek- 补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 营销文案、广告语生成 社交媒体内容(如推文、帖子) 剧本或对话设计 文本创作 长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 摘要与改写 02 03 文本生成 自然语言理解与分析 知识推理 知识推理 逻辑问题解答(数学、常识推 理) 因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 意图识别(客服对话、用户查询) 实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通• DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 文本简化(降低复杂度) 多语言翻译与本地化 摘要与改写 02 01 03 文本生成 自然语言理解与分析 知识推理 知识推理 逻辑问题解答(数学、常识推 理) 因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 意图识别(客服对话、用户查询) 实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 常规绘图 如何使用DeepSeek? 网页端:https://chat.deepseek.com APP:DeepSeek0 码力 | 103 页 | 5.40 MB | 8 月前3
国家人工智能产业综合标准化体系建设指南(2024版)智能治理倡议》,进一步加强人工智能标准化工作系统谋划, 加快构建满足人工智能产业高质量发展和“人工智能+”高水 平赋能需求的标准体系,夯实标准对推动技术进步、促进企 业发展、引领产业升级、保障产业安全的支撑作用,更好推 进人工智能赋能新型工业化,特制定本指南。 一、产业发展现状 人工智能是引领新一轮科技革命和产业变革的基础性 和战略性技术,正成为发展新质生产力的重要引擎,加速和 实体经 作会议和全国新型工业化推进大会部署要求,完整、准确、 全面贯彻新发展理念,统筹高质量发展和高水平安全,加快 赋能新型工业化,以抢抓人工智能产业发展先机为目标,完 善人工智能标准工作顶层设计,强化全产业链标准工作协 同,统筹推进标准的研究、制定、实施和国际化,为推动我 国人工智能产业高质量发展提供坚实的技术支撑。 到 2026 年,标准与产业科技创新的联动水平持续提升, 新制定国家标准和行业标准 50 项以上,引领人工智能产业 高质量发展的标准体系加快形成。开展标准宣贯和实施推广 的企业超过 1000 家,标准服务企业创新发展的成效更加凸 显。参与制定国际标准 20 项以上,促进人工智能产业全球 化发展。 坚持创新驱动。优化产业科技创新与标准化联动机制, 加快人工智能领域关键共性技术研究,推动先进适用的科技 创新成果高效转化成标准。 坚持应用牵引。坚持企业主体、市场导向,面向行业应 用需求,强化创新成果迭代和应用场景构建,协同推进人工0 码力 | 13 页 | 701.84 KB | 1 年前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502面对全球大模型产业之争,要打赢「三大战役」 AGI之战 应用场景之战 大模型安全之战 • 探索超越人类的超级人工 智能AGI • 不仅是科技之争,更是国 运之争 • 不发展是最大的不安全, 发挥举国体制优势,打赢 追赶之战 • 大模型带来前所未有安全 挑战 • 外挂式传统安全手段难以 应对 • 应对模型安全新挑战,打 赢未雨绸缪之战 • 大模型是能力而非产品, 结合场景才能发挥价值 降240倍 国内:大模型「亏本」卖,可以「白嫖」大模型API能力 19政企、创业者必读 DeepSeek出现之前的十大预判 之七 多模态越来越重要 由文本生成迈向图像、视频、3D内容与世界模拟 多模态模态在能力变强的同时,规模正在变小 20政企、创业者必读 21 DeepSeek出现之前的十大预判 之八 智能体推动大模型快速落地 能够调用各种工具,具有行动能力 写AI发展方向 30政企、创业者必读 DeepSeek在用户体验上实现了三件事 更加理解用户需求,降低Prompt要求 直接呈现思维过程,展现像真人一样思考的能力 可实时联网,把搜索能力与推理能力结合 DeepSeek颠覆式创新——用户体验 具备强大推理能力,思维过程更加缜密,智能性提升 用起来更像真人,写作能力更强,想象力更丰富 31政企、创业者必读 DeepSeek-R1用户体验改善的作用0 码力 | 76 页 | 5.02 MB | 5 月前3
DeepSeek图解10页PDFDeepSeek 1.1 为什么要在本地部署 DeepSeek 在本地搭建大模型(如 DeepSeek)具有多个重要的优势,比如: 1. 保护隐私与数据安全。数据不外传:本地运行模型可以完全避免数据上 传至云端,确保敏感信息不被第三方访问。 2. 可定制化与优化。支持微调(Fine-tuning):可以根据特定业务需求对模 型进行微调,以适应特定任务,如行业术语、企业内部知识库等。 3. 离线 DeepSeek-R1 精华图解 3.1 DeepSeek-R1 完整训练过程 DeepSeek-R1 主要亮点在于出色的数学和逻辑推理能力,区别于一般的通 用 AI 模型。其训练方式结合了强化学习(RL)与监督微调(SFT),创造 了一种高效训练,高推理能力 AI 模型的方法。 整个训练过程分为核心两阶段,第一步训练基于 DeepSeek-V3 论文中的基 础模型(而非最终版本),并经历了 SFT 程后,使得 R1 不仅在推理任务中表现卓越,同时在非推理任务中也表现出 色。但由于其能力拓展至非推理类应用,因此在这些应用中引入了帮助性 (helpfulness)和安全性(safety)奖励模型(类似于 Llama 模型),以优化 与这些应用相关的提示处理能力。 DeepSeek-R1 是训练流程的终点,结合了 R1-Zero 的推理能力和通用强化 学习的任务适应能力,成为一个兼具强推理和通用能力的高效0 码力 | 11 页 | 2.64 MB | 8 月前3
清华大学 普通人如何抓住DeepSeek红利清华大学新闻与传播学院 新媒体研究中心 元宇宙文化实验室 @新媒沈阳 团队 : 陶炜博士生 普通人如何抓住DeepSeek红利 p Deepseek是什么? p Deepseek能够做什么? ——在工作、学习、生活和社会关系中解决问题 p 如何提问?让AI一次性生成你想要的东西 卷不动了?DeepSeek帮你一键“躺赢”! 学习太难?DeepSeek带你“开挂”逆袭! 面对AI提供的多种解法,人类需具备批判性思维与逻辑判断能力,通过选择最优答案,实现解决方案的创新 性再生。 p 智慧赋能的决策力 提出问题与甄别答案的能力,使人类在信息爆炸与AI辅助的时代,通过决策行为实现价值创造,成为社会发 展的持续动力。 善用DeepSeek的两大关键:提出问题 鉴别答案 DeepSeek是什么? • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应用。 • 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场 景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 决策支持 文体转换 个性化推荐 翻译与转换 多语言翻译 异常检测 多源信息融合 知识与推理 知识图谱构建 流程优化 数据可视化 数据分析 趋势分析 多模态交互 任务执行 任务协调 工具调用0 码力 | 65 页 | 4.47 MB | 8 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单5支持联网查询网址,Claude 3.5 sonnet暂不支持; 四个模型均能根据上传的网页代码,对多个网址链接进行筛选、去重,完全提取出符合指令要求的所有网址链接并形成列表; 在复杂爬虫任务上,DeepSeek R1与Open AI o3min生成的代码均能正常执行数据采集任务,o3响应速度更快,R1数据采集结果更加完 整准确;其他2个模型都存在多次调试但代码仍然运行不成功的问题,如代码中罗列URL不全、输出文本中提取数据为空等。 很好地完成了数据读取及提取 任务,没有漏数据指标,数据 逻辑性很好 Kimi k1.5 能够快速读取文件数据,并 整理成可视化数据表格,但 填入数据有所缺失。 DeepSeek R1与Claude 3.5 sonnet均能很好的完成文件数据读取任务,生成的表格逻辑性强、数据指标清晰,Claude 3.5 sonnet一 次性完成表格生成后支持直接复制和表格文件下载。 Open 5相较短文本处理表现更加突出,提取准确的同时数据维度更加全面;由于文本过长DeepSeek R1无法完成任务; 综合来看,Open AI o3mini响应最快效率最高,但在数据集成维度上稍显不足,同时与Claude 3.5 sonnet所输出的表格更为工整、简洁。 Claude 3.5 sonnet 一般文本(7000token): 能够准确提取文本数据,并 整理成可视化图表,表格文 字简洁,没有提及文本中的0 码力 | 85 页 | 8.31 MB | 8 月前3
清华大学第二弹:DeepSeek赋能职场DeepSeek如何赋能职场应用? ——从提示语技巧到多场景应用 中央民族大学 新闻与传播学院 清华大学 @新媒沈阳 团队 向安玲 Innovator For Culture & Art 文、图、乐、剧 Innovator For Social 智能角色交互体 Innovator For Science & Industry 行业大模型 基座大模型 人机协同 Chatbot I并实现人类与AI共生发展的学术与实践模式。 团队愿景 • 李默非(清华大学人工智能学院拟录博士生):人机共生之基座大模型研究研发 • 何静(清华博士后、北航助理教授):人机共生之快生引擎研究研发 • 尤可可(清华博士后、北石化助理教授):人机共生之AIGC短视频 • 安梦瑶(清华大学博士后):人机共生之AI诊疗研究 • 陶炜(清华大学博士生):人机共生之AI实时增强技术的探索与实践 • 胡晓 余梦珑(清华大学博士后):人机共生之媒体智能体应用 • 张家铖(清华大学博士后):人机共生之AI评测 • 张诗瑶(清华大学博士后):人机共生之AI社会理论分析 • 朱雪菡(清华大学博士后):人机共生之影视内容创意与制作 • 陈禄梵(清华大学博士生):人机共生之AI美学理论 • 罗雨果(清华大学拟录博士生):人机共生之传播分析 • 章艾媛(清华大学博士生):人机共生之数据分析 • 邹开元(清华大学博士生):人机共生之文学内容创作0 码力 | 35 页 | 9.78 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告Tuning) 大模型训练平台与工具 基础设施 LLM Agent 备案上线的中国大模型 知名大模型 知名大模型应用 大模型 算力 工具和平台 LLMOps 大模型聚合平台 开发工具 AI 编程 插件、IDE、终端 代码生成工具 编程语言 3 / 32 LLM 技术背景 Transformer 架构和预训练与微调策略是 LLM 技术的核心,随着大规模语言数据集的可用性和计算能 基础设施:大模型框架及微调 (Fine Tuning) 想要微调一个模型,一般包含以下关键步骤: 1.选择预训练模型:选取一个已经在大量数据上进 行过预训练的模型作为起点; 2.准备任务特定数据:收集与目标任务直接相关的 数据集,这些数据将用于微调模型; 3.微调训练:在任务特定数据上训练预训练的模型, 调整模型参数以适应特定任务; 4.评估:在验证集上评估模型性能,确保模型对新 数据有良好的泛化能力; ) 10 / 32 LLM 基础设施:大模型训练平台与工具 大模型训练平台和工具提供了强大且灵活的基础设施,使得开发和训练复杂的语言模型变得可行且高 效。 这些工具提供了先进的算法、预训练模型和优化技术,极大地简化了模型开发过程,加速了实验周期, 并使得模型能够更好地适应各种不同的应用场景。此外,它们还促进了学术界和工业界之间的合作与 知识共享,推动了自然语言处理技术的快速发展和广泛应用。0 码力 | 32 页 | 13.09 MB | 1 年前3
共 14 条
- 1
- 2













