清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单如文本生成、分类和问答。 Kimi k1.5 垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。 长文本处理:擅长处理长文本 和复杂文档,适合专业场景。 定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini 小型化设计:轻量级模型, 适合资源有限的环境。 快速响应:优化推理速度, 适合实时交互场景。 通用性强:适用于多种自 告创作效率。 • 中小企业AI定制化服务:为中小企业提 供定制化的AI解决方案,如智能客服、营销 和办公工具,提升企业竞争力。 • 开源AI教育平台:借助DeepSeek R1 的低成本特性,创建开源AI教育平台,提供 免费课程和实验资源,促进AI教育普及。 • 智能编程教育助手:为编程学生提供实 时编程指导,自动生成代码示例,帮助解决 编程难题。 • 自动化代码审查工具:自动审查代码, visual format. 以视觉形式显示趋势 Can you clean this dataset? 清洗数据 Can you create a heatmap using this data? 创建一个热力图 Can you segment this data and create a table? 切分数据 Can you create a graph using this data? 制作一个图0 码力 | 85 页 | 8.31 MB | 8 月前3
00 Deepseek官方提示词只输出提示词,不要输出多余解释 USER “ 请帮我生成一个 Linux ” 助手 的提示词 2. 文案大纲生成:根据用户提供的主题,来生成文案大纲 SYSTEM 你是一位文本大纲生成专家,擅长根据用户的需求创建一个有条理且易于扩展成完整文章的大纲,你拥有强大的 主题分析能力,能准确提取关键信息和核心要点。具备丰富的文案写作知识储备,熟悉各种文体和题材的文案大 纲构建方法。可根据不同的主题需求,如商业文案、 else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); } } ``` 9. 角色扮演(自定义人设):自定义人设,来与用户进行角色扮演。 SYSTEM 请你扮演一个刚从美国留学回国的人,说话时候会故意中文夹杂部分英文单词,显得非常 fancy,对话中总是带 有很强的优越感。 USER 美国的饮食还习惯么。0 码力 | 4 页 | 7.93 KB | 8 月前3
DeepSeek从入门到精通(20250204)核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 结合最新AI研究成果,拓展应用边界 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 结合最新AI研究成果,拓展应用边界 体方法和步骤。 6. 请将新获取的信息和反馈整合到已有内容中,形成一个有机整体,详细描述 整合的步骤和方法。 1. 请将[主题]相关的文本描述与数据结合,生成一个全面的分析报告。 2. 请根据[主题]创建一个包含图像和数据可视化的报告,详细描述可视化方法。 3. 请设计一个融合文本、图像、音频或视频元素的多媒体内容,增强内容的丰富 性。 4. 请设计一个互动数据展示方案,使读者可以与数据进行互动,并详细描述设计0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 结合最新AI研究成果,拓展应用边界 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 结合最新AI研究成果,拓展应用边界 体方法和步骤。 6. 请将新获取的信息和反馈整合到已有内容中,形成一个有机整体,详细描述 整合的步骤和方法。 1. 请将[主题]相关的文本描述与数据结合,生成一个全面的分析报告。 2. 请根据[主题]创建一个包含图像和数据可视化的报告,详细描述可视化方法。 3. 请设计一个融合文本、图像、音频或视频元素的多媒体内容,增强内容的丰富 性。 4. 请设计一个互动数据展示方案,使读者可以与数据进行互动,并详细描述设计0 码力 | 103 页 | 5.40 MB | 8 月前3
普通人学AI指南. . . . . . . . . . 34 5.6 MaxKB 配置本地 llama3 . . . . . . . . . . . . . . . . . . . . . . 37 5.7 创建知识库应用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 1 AI 大模型基础 1.1 AIGC AIGC 是指使 Figure 6: AI 编程工具 2.4.3 AirOps 用于生成和修改 SQL 语句的工具,旨在简化数据库操作。 2.4.4 ChatDev 面壁智能开发的 AI 智能体开发平台,支持创建和部署智能对话系统。 2.4.5 solo Mozilla 开源项目,提供零代码网站开发功能,易于使用。 2.4.6 Cursor 开源的 AI 代码编辑器,旨在通过 AI 技术助力快速软件开发。 可以方便地扩展并支持微服务架构的部署。 基本概念: 1. 容器(Container):轻量级、独立的可执行软件包,包含了运行所需的代 码、运行时、系统工具、系统库和设置。 2. 镜像(Image):用于创建容器的只读模板。一个镜像可以包含完整的操作 系统环境。 3. Dockerfile:定义镜像内容的文本文件,包含了构建镜像的所有指令。 4. Docker Hub:公共的 Docker 镜像仓库,用于存储和分发0 码力 | 42 页 | 8.39 MB | 8 月前3
清华大学 普通人如何抓住DeepSeek红利协调民间救援队GPS定位 老人转移方案: ✓ 调取智能手环历史活动轨迹 ✓ 社区志愿者网络即时广播 ③ 企业级应急: 启动边缘计算节点转移关键数据 生成政府灾情报告模板(自动填充损失评估) ④ 社会协作: 创建临时物资交换区块链账本 多语言求援信息自动生成(对接领事馆系统) 技术红利: 救援响应速度提升3.2倍,资产损失减少78%,危机持续时间压 缩56% p 第一步:全面描述整体情景 p 第二步:分项深入探讨,获取针对性建议 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化 、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活 、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法 结合最新AI研究成果,拓展应用边界0 码力 | 65 页 | 4.47 MB | 8 月前3
Deepseek R1 本地部署完全手册githubusercontent.com/Homebrew/install/HEAD/install.sh)" brew install llama.cpp 2. 下载并合并模型分⽚: 3. 安装Ollama: 4. 创建Modelfile: 5. 运⾏模型: 4. 性能调优与测试 GPU利⽤率低:升级⾼带宽内存(如DDR5 5600+)。 扩展交换空间: 六、注意事项与⻛险提示 1. 成本警示: 700 码力 | 7 页 | 932.77 KB | 8 月前3
清华大学第二弹:DeepSeek赋能职场eepseek-ai/deepseek-r1 671B(全量模型) 网页版直接使用,支持API调用,注册送1000点数,免费体验。 微软Azure https://ai.azure.com 671B(全量模型) 需注册微软账户并创建订阅,免费部署,支持参数调节。 亚马逊AWS https://aws.amazon.com/c n/blogs/aws/deepseek-r1- models-now-available-on-0 码力 | 35 页 | 9.78 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告架构图 (图源:https://python.langchain.com/docs/get_started/introduction) �� LangChain 是一个帮助开发者使用 LLM 创建应用的开源框 架,它可以将 LLM 与外部数据源进行连接,并允许与 LLM 进行交互。 LangChain 于 2022 年 10 月作为开源项目推出,并于 2023 年 4 月注册成立公司,累计获得超过0 码力 | 32 页 | 13.09 MB | 1 年前3
人工智能安全治理框架 1.0密泄露,推理过程不可信、决策输出错误,甚至运行故障。 (e)输出不可靠风险。生成式人工智能可能产生 “幻觉”,即生成看似合理, 实则不符常理的内容,造成知识偏见与误导。 (f)对抗攻击风险。攻击者通过创建精心设计的对抗样本数据,隐蔽地 误导、影响,以至操纵人工智能模型,使其产生错误的输出,甚至造成运行瘫痪。 3.1.2 数据安全风险 (a)违规收集使用数据风险。人工智能训练数据的获取,以及提供服务0 码力 | 20 页 | 3.79 MB | 1 月前3
共 10 条
- 1













