 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单月 2 0 日 2 0 2 4 年 1 2 月 2 6 日 发 布 总 参 数 达 6 7 1 0 亿 的 D e e p S e e k - V 3 , 采 用 创 新 MoE架构和FP8混合精度训练, 训练成本大幅降低 DeepSeek是一家专注通用人工智能(AGl)的中国科技公司,主攻大模型研发与应用。 DeepSeek-R1是其最新发布并开源的推理模型,擅长处理复杂任务且可免费商用,其性能 的表现。 第二阶段:拒绝 采样与监督微调 通 过 拒 绝 采 样 从 R L 检 查 点 生 成 新 的 合 成 数 据 , 并 与 写 作 、 事 实 问 答 等 领 域的监督数据混合。 然 后 对 基 础 模 型 进 行 两 轮 微 调 , 进 一 步提升模型的性能。 第三阶段:全场 景强化学习 结 合 规 则 奖 励 ( 针 对 推 理 任 务 ) 和 神 经 奖 系列和Llama 系列  架构创新 通过将模型划分为多个专家模块,实 现高效计算和推理。DeepSeek通过 无辅助损失的自然负载均衡和共享专 家机制,解决了专家模块工作量不平 衡的问题。 混合专家(MoE)架构 通过低秩压缩减少推理时的内存占用, 同时保持与传统多头注意力(MHA) 相当的性能。MLA在训练中减少了 内存和计算开销,在推理中降低了 KV缓存占用空间。 多头潜在注意力(MLA)机制0 码力 | 85 页 | 8.31 MB | 8 月前3 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单月 2 0 日 2 0 2 4 年 1 2 月 2 6 日 发 布 总 参 数 达 6 7 1 0 亿 的 D e e p S e e k - V 3 , 采 用 创 新 MoE架构和FP8混合精度训练, 训练成本大幅降低 DeepSeek是一家专注通用人工智能(AGl)的中国科技公司,主攻大模型研发与应用。 DeepSeek-R1是其最新发布并开源的推理模型,擅长处理复杂任务且可免费商用,其性能 的表现。 第二阶段:拒绝 采样与监督微调 通 过 拒 绝 采 样 从 R L 检 查 点 生 成 新 的 合 成 数 据 , 并 与 写 作 、 事 实 问 答 等 领 域的监督数据混合。 然 后 对 基 础 模 型 进 行 两 轮 微 调 , 进 一 步提升模型的性能。 第三阶段:全场 景强化学习 结 合 规 则 奖 励 ( 针 对 推 理 任 务 ) 和 神 经 奖 系列和Llama 系列  架构创新 通过将模型划分为多个专家模块,实 现高效计算和推理。DeepSeek通过 无辅助损失的自然负载均衡和共享专 家机制,解决了专家模块工作量不平 衡的问题。 混合专家(MoE)架构 通过低秩压缩减少推理时的内存占用, 同时保持与传统多头注意力(MHA) 相当的性能。MLA在训练中减少了 内存和计算开销,在推理中降低了 KV缓存占用空间。 多头潜在注意力(MLA)机制0 码力 | 85 页 | 8.31 MB | 8 月前3
 国家人工智能产业综合标准化体系建设指南(2024版)所示。其中,基础共性标准是人 工智能的基础性、框架性、总体性标准。基础支撑标准主要 规范数据、算力、算法等技术要求,为人工智能产业发展夯 实技术底座。关键技术标准主要规范人工智能文本、语音、 图像,以及人机混合增强智能、智能体、跨媒体智能、具身 智能等的技术要求,推动人工智能技术创新和应用。智能产 品与服务标准主要规范由人工智能技术形成的智能产品和 服务模式。赋能新型工业化标准主要规范人工智能技术赋能 布式计算等软硬件 协同任务的交互协议、执行效率和协同性能等标准。 (三)关键技术标准 关键技术标准主要包括机器学习、知识图谱、大模型、自然 语言处理、智能语音、计算机视觉、生物特征识别、人机混合增 强智能、智能体、群体智能、跨媒体智能、具身智能等标准。 1. 机器学习标准。规范机器学习的训练数据、数据预处理、 模型表达和格式、模型效果评价等,包括自监督学习、无监督学 习、半监督学习、深度学习、强化学习等标准。 求和评价方法,包括功能、性能、可维护性等标准。 7. 生物特征识别标准。规范生物特征样本处理、生物特征 数据协议、设备或系统等技术要求,包括生物特征数据交换格式、 接口协议等标准。 8. 人机混合增强智能标准。规范多通道、多模式和多维度 的交互途径、模式、方法和技术要求,包括脑机接口、在线知识 演化、动态自适应、动态识别、人机协同感知、人机协同决策与 控制等标准。 9. 智能体标准。规范以通用大模型为核心的智能体实例和0 码力 | 13 页 | 701.84 KB | 1 年前3 国家人工智能产业综合标准化体系建设指南(2024版)所示。其中,基础共性标准是人 工智能的基础性、框架性、总体性标准。基础支撑标准主要 规范数据、算力、算法等技术要求,为人工智能产业发展夯 实技术底座。关键技术标准主要规范人工智能文本、语音、 图像,以及人机混合增强智能、智能体、跨媒体智能、具身 智能等的技术要求,推动人工智能技术创新和应用。智能产 品与服务标准主要规范由人工智能技术形成的智能产品和 服务模式。赋能新型工业化标准主要规范人工智能技术赋能 布式计算等软硬件 协同任务的交互协议、执行效率和协同性能等标准。 (三)关键技术标准 关键技术标准主要包括机器学习、知识图谱、大模型、自然 语言处理、智能语音、计算机视觉、生物特征识别、人机混合增 强智能、智能体、群体智能、跨媒体智能、具身智能等标准。 1. 机器学习标准。规范机器学习的训练数据、数据预处理、 模型表达和格式、模型效果评价等,包括自监督学习、无监督学 习、半监督学习、深度学习、强化学习等标准。 求和评价方法,包括功能、性能、可维护性等标准。 7. 生物特征识别标准。规范生物特征样本处理、生物特征 数据协议、设备或系统等技术要求,包括生物特征数据交换格式、 接口协议等标准。 8. 人机混合增强智能标准。规范多通道、多模式和多维度 的交互途径、模式、方法和技术要求,包括脑机接口、在线知识 演化、动态自适应、动态识别、人机协同感知、人机协同决策与 控制等标准。 9. 智能体标准。规范以通用大模型为核心的智能体实例和0 码力 | 13 页 | 701.84 KB | 1 年前3
 DeepSeek从入门到精通(20250204)描述问题背景与目标, 由模型规划解决路径 复杂问题、需模型自主 推理 “我需要优化用户登录流程, 请分析当前瓶颈并提出3种方 案。” ✅ 激发模型深层推理 ❌ 需清晰定义需求边界 混合模式 结合需求描述与关键 约束条件 平衡灵活性与可控性 “设计一个杭州三日游计划, 要求包含西湖和灵隐寺,且 预算控制在2000元内。” ✅ 兼顾目标与细节 ❌ 需避免过度约束 启发式提问 Combine(组合):整合多个想法 • Unify(统一):创建一致的叙述或解决方案 • Synthesize(综合):形成最终结论 跨界思维的提示语链设计 基于“BRIDGE”框架 • Blend(混合):融合不同领域的概念 • Reframe(重构):用新视角看待问题 • Interconnect(互联):建立领域间的联系 • Decontextualize(去情境化):将概念从原始环 境中抽离0 码力 | 104 页 | 5.37 MB | 8 月前3 DeepSeek从入门到精通(20250204)描述问题背景与目标, 由模型规划解决路径 复杂问题、需模型自主 推理 “我需要优化用户登录流程, 请分析当前瓶颈并提出3种方 案。” ✅ 激发模型深层推理 ❌ 需清晰定义需求边界 混合模式 结合需求描述与关键 约束条件 平衡灵活性与可控性 “设计一个杭州三日游计划, 要求包含西湖和灵隐寺,且 预算控制在2000元内。” ✅ 兼顾目标与细节 ❌ 需避免过度约束 启发式提问 Combine(组合):整合多个想法 • Unify(统一):创建一致的叙述或解决方案 • Synthesize(综合):形成最终结论 跨界思维的提示语链设计 基于“BRIDGE”框架 • Blend(混合):融合不同领域的概念 • Reframe(重构):用新视角看待问题 • Interconnect(互联):建立领域间的联系 • Decontextualize(去情境化):将概念从原始环 境中抽离0 码力 | 104 页 | 5.37 MB | 8 月前3
 清华大学 DeepSeek 从入门到精通描述问题背景与目标, 由模型规划解决路径 复杂问题、需模型自主 推理 “我需要优化用户登录流程, 请分析当前瓶颈并提出3种方 案。” ✅ 激发模型深层推理 ❌ 需清晰定义需求边界 混合模式 结合需求描述与关键 约束条件 平衡灵活性与可控性 “设计一个杭州三日游计划, 要求包含西湖和灵隐寺,且 预算控制在2000元内。” ✅ 兼顾目标与细节 ❌ 需避免过度约束 启发式提问 Combine(组合):整合多个想法 • Unify(统一):创建一致的叙述或解决方案 • Synthesize(综合):形成最终结论 跨界思维的提示语链设计 基于“BRIDGE”框架 • Blend(混合):融合不同领域的概念 • Reframe(重构):用新视角看待问题 • Interconnect(互联):建立领域间的联系 • Decontextualize(去情境化):将概念从原始环 境中抽离0 码力 | 103 页 | 5.40 MB | 8 月前3 清华大学 DeepSeek 从入门到精通描述问题背景与目标, 由模型规划解决路径 复杂问题、需模型自主 推理 “我需要优化用户登录流程, 请分析当前瓶颈并提出3种方 案。” ✅ 激发模型深层推理 ❌ 需清晰定义需求边界 混合模式 结合需求描述与关键 约束条件 平衡灵活性与可控性 “设计一个杭州三日游计划, 要求包含西湖和灵隐寺,且 预算控制在2000元内。” ✅ 兼顾目标与细节 ❌ 需避免过度约束 启发式提问 Combine(组合):整合多个想法 • Unify(统一):创建一致的叙述或解决方案 • Synthesize(综合):形成最终结论 跨界思维的提示语链设计 基于“BRIDGE”框架 • Blend(混合):融合不同领域的概念 • Reframe(重构):用新视角看待问题 • Interconnect(互联):建立领域间的联系 • Decontextualize(去情境化):将概念从原始环 境中抽离0 码力 | 103 页 | 5.40 MB | 8 月前3
 Deepseek R1 本地部署完全手册性能表现(短⽂本⽣成) 消费级设备 Mac Studio(192GB统⼀内存) 10+ token/秒 ⾼性能服务器 4×RTX 4090(96GB显存+384GB内存) 7-8 token/秒(混合推理) 3. 部署步骤(Linux示例) 1. 安装依赖⼯具: # 安装llama.cpp(⽤于合并分⽚⽂件) /bin/bash -c "$(curl -fsSL https://raw.githubusercontent0 码力 | 7 页 | 932.77 KB | 8 月前3 Deepseek R1 本地部署完全手册性能表现(短⽂本⽣成) 消费级设备 Mac Studio(192GB统⼀内存) 10+ token/秒 ⾼性能服务器 4×RTX 4090(96GB显存+384GB内存) 7-8 token/秒(混合推理) 3. 部署步骤(Linux示例) 1. 安装依赖⼯具: # 安装llama.cpp(⽤于合并分⽚⽂件) /bin/bash -c "$(curl -fsSL https://raw.githubusercontent0 码力 | 7 页 | 932.77 KB | 8 月前3
 DeepSeek图解10页PDFCoT)示例,用于支持后续的 SFT 阶段,如图7所示。更加详细介绍参考3.2节。 3.1.2 核心创新 2:通用强化学习 第一阶段 R1-Zero 虽然展现出惊人的推理能力提升,但是也出现了回复时 语言混合,非推理任务回复效果差的问题,为了解决这些问题,DeepSeek 提出通用强化学习训练框架。 如图7所示,通用强化学习(General Reinforcement Learning)基于 SFT-0 码力 | 11 页 | 2.64 MB | 8 月前3 DeepSeek图解10页PDFCoT)示例,用于支持后续的 SFT 阶段,如图7所示。更加详细介绍参考3.2节。 3.1.2 核心创新 2:通用强化学习 第一阶段 R1-Zero 虽然展现出惊人的推理能力提升,但是也出现了回复时 语言混合,非推理任务回复效果差的问题,为了解决这些问题,DeepSeek 提出通用强化学习训练框架。 如图7所示,通用强化学习(General Reinforcement Learning)基于 SFT-0 码力 | 11 页 | 2.64 MB | 8 月前3
 人工智能安全治理框架 1.0可以回退到以前的商用版本。 (g)研发者应定期开展安全评估测试,测试前明确测试目标、范围和安 全维度,构建多样化的测试数据集,涵盖各种应用场景。 (h)研发者应制定明确的测试规则和方法,包括人工测试、自动测试、 混合测试等,利用沙箱仿真等技术对模型进行充分测试和验证。 (i) 研发者应评估人工智能模型算法对外界干扰的容忍程度,以适用范 围、注意事项或使用禁忌的形式告知服务提供者和使用者。 (j) 研发者应0 码力 | 20 页 | 3.79 MB | 1 月前3 人工智能安全治理框架 1.0可以回退到以前的商用版本。 (g)研发者应定期开展安全评估测试,测试前明确测试目标、范围和安 全维度,构建多样化的测试数据集,涵盖各种应用场景。 (h)研发者应制定明确的测试规则和方法,包括人工测试、自动测试、 混合测试等,利用沙箱仿真等技术对模型进行充分测试和验证。 (i) 研发者应评估人工智能模型算法对外界干扰的容忍程度,以适用范 围、注意事项或使用禁忌的形式告知服务提供者和使用者。 (j) 研发者应0 码力 | 20 页 | 3.79 MB | 1 月前3
 清华大学 普通人如何抓住DeepSeek红利描述问题背景与目标, 由模型规划解决路径 复杂问题 、需模型自主 推理 “我需要优化用户登录流程, 请分析当前瓶颈并提出3种方 案 。 ” 激发模型深层推理 需清晰定义需求边界 混合模式 结合需求描述与关键 约束条件 平衡灵活性与可控性 “设计一个杭州三日游计划, 要求包含西湖和灵隐寺, 且 预算控制在2000元内 。 ” 兼顾目标与细节 需避免过度约束0 码力 | 65 页 | 4.47 MB | 8 月前3 清华大学 普通人如何抓住DeepSeek红利描述问题背景与目标, 由模型规划解决路径 复杂问题 、需模型自主 推理 “我需要优化用户登录流程, 请分析当前瓶颈并提出3种方 案 。 ” 激发模型深层推理 需清晰定义需求边界 混合模式 结合需求描述与关键 约束条件 平衡灵活性与可控性 “设计一个杭州三日游计划, 要求包含西湖和灵隐寺, 且 预算控制在2000元内 。 ” 兼顾目标与细节 需避免过度约束0 码力 | 65 页 | 4.47 MB | 8 月前3
共 8 条
- 1













