清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单沈阳团队博士后 何静 能做什么? 要怎么做? 效果如何? 一 能做什么? 数据挖掘 数据分析 数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 DeepSeek R1 能够提取所有网址并进行 筛选、去重,所撰写代码 运行后完成数据爬虫任务, 所获取数据准确,少量数 据有所遗漏。 提示词 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 爬虫数据采集 目前DeepSeek R1、Open AI o3mini、Kimi k1.5支持联网查询网址,Claude 数据结果为空。 结论 Claude 3.5 sonnet 可以提取所有网址,调整后可输出正 确代码,运行代码能生成本地文件, 但提取数据结果为空。 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 文件数据读取 1、读取文件; 2、根据指定内容整理成表格。 任务 Open AI o3mini 暂不支持附件上传,响应速度0 码力 | 85 页 | 8.31 MB | 8 月前3
DeepSeek从入门到精通(20250204)主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 常规绘图 如何使用DeepSeek? 系统思维 设计多步骤、多维度的提示语体系 构建提示语模板库,提高效率和一致性 开发提示语策略,应对复杂场景 表1-3-2提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 表1-3-3提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 常规绘图 如何使用DeepSeek? 系统思维 设计多步骤、多维度的提示语体系 构建提示语模板库,提高效率和一致性 开发提示语策略,应对复杂场景 表1-3-2提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 表1-3-3提示语设计进阶技能子项 核心技能 子项 语境理解 深入分析任务背景和隐含需求 考虑文化、伦理和法律因素 预测可能的误解和边界情况 抽象化能力 识别通用模式,提高提示语可复用性 设计灵活、可扩展的提示语模板 创建适应不同场景的元提示语 批判性思考 客观评估AI输出,识别潜在偏见和错误 设计反事实提示语,测试AI理解深度 构建验证机制,确保AI输出的可靠性 创新思维 探索非常规的提示语方法0 码力 | 103 页 | 5.40 MB | 8 月前3
清华大学 普通人如何抓住DeepSeek红利场景1:1小时内写完一个1万字的项目书 场景:下午3点,你突然接到领导通知:“今晚4点前必须交一份10000字的智能物流园区项目方案书,客户临时提 前会议!”你大脑一片空白——手头只有零散的会议记录、几份过时的模板,且对“智能物流”技术细节不熟。电 脑右下角显示时间:3:05 PM,你手心冒汗,疯狂翻找资料,但文档光标始终停留在标题页…… 场景1:1小时内写完一个1万字的项目书 是否可用DeepSeek(深度求索)辅助处理? 数据嫁接:若缺乏具体数据,直接让AI生成合理虚构值(标注“示例”规避风险): p “假设园区占地500亩,日均处理包裹量50万件,请计算自动化分拣设备的配置数量,用表格展示。” p 模板复制:对同类章节(如3.1/3.2/3.3)使用相同指令模板,仅替换关键词。 p 强制格式:要求AI输出带编号小标题、分点、表格的内容,直接粘贴后即显“专业感”。 第三阶段:20分钟——用AI补全软性内容(目标:1000字) 线支持(附排班表)。回来后我申请周末加班补进度。 场景4:项目中急需请假 如何开口 最终行动建议: • 快速评估优先级:家庭紧急事件(如生命健康)永远高于工作,无需愧疚。 • 用AI生成沟通模板:确保信息清晰、理性、有解决方案。 • 当面沟通+书面留痕:先口头说明(体现尊重),再邮件/消息发送书面请假(附交接文 档)。 • 保持灵活应对:即使领导有情绪,坚持“解决问题”而非“对抗”态度,如:“您看这样0 码力 | 65 页 | 4.47 MB | 8 月前3
普通人学AI指南. . . 25 4.5.1 权限问题 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 零代码本地搭建个人知识库 27 5.1 本地知识库优势 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.2 docker 下载 MaxKB . . . . . . . . . . . . . 32 5.5 构建第一个私人知识库 . . . . . . . . . . . . . . . . . . . . . . . . 34 5.6 MaxKB 配置本地 llama3 . . . . . . . . . . . . . . . . . . . . . . 37 5.7 创建知识库应用 . . . . . . . . . . . . . . . . AI 编程开发助手,集成在 JetBrains 系列开发工具中,提升编码效率。 9 Figure 6: AI 编程工具 2.4.3 AirOps 用于生成和修改 SQL 语句的工具,旨在简化数据库操作。 2.4.4 ChatDev 面壁智能开发的 AI 智能体开发平台,支持创建和部署智能对话系统。 2.4.5 solo Mozilla 开源项目,提供零代码网站开发功能,易于使用。 20 码力 | 42 页 | 8.39 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告生成、文本摘要、翻译等任务中展现了强大的通用性。 本报告从技术人视角出发,将深入探讨 LLM 技术的背景、 基础设施、应用现状,以及相关的工具和平台。 2 / 32 LLM Tech Map 向量数据库 数据库向量支持 大模型框架、微调 (Fine Tuning) 大模型训练平台与工具 基础设施 LLM Agent 备案上线的中国大模型 知名大模型 知名大模型应用 大模型 04 向量数据库/数据库向量支持 为大模型提供高效的存储和检索能力 大模型框架及微调 (Fine Tuning) 大模型框架提供基本能力和普适性,而微调 则是实现特定应用和优化性能的关键环节 大模型训练平台&工具 提供了在不同硬件和环境中训练大语言模型 所需的基础设施和支持 编程语言 以 Python 为代表 5 / 32 LLM 基础设施:向量数据库/数据库向量支持 向 向量数据库是专门用于存储和检索向量数据的数据库,它可以为 LLM 提供高效的存储和检索能力。通过数据向量化,实现了 在向量数据库中进行高效的相似性计算和查询。 根据向量数据库的的实现方式,可以将向量数据库大致分为两类: 原生的向量数据库专门为存储和检索向量而设计, 所管理的数据是基于对象或数据点的向量表示进行 组织和索引。 包括 等均属于原生向量数据库。 除了选择专业的向量数据库,对传统数据库添加0 码力 | 32 页 | 13.09 MB | 1 年前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502成本:不需要投入千万、上亿资金,少量资金投入就可以 能力:不需要等待下一代AGI面面俱到的能力 响应:响应速度更快,用户体验更好 部署:可以私有化部署,保障政府企业数据安全 训练:不需要从头训练,只需要专业知识库或者微调就可以 人才:大模型训练复杂程度降低,对人才要求也降低 工具:已经有全套工具 走专业化大模型 之路,大模型落 地门槛大幅降低 从原子弹变成 「茶叶蛋」 52政企、创业者必读 基于DeepSeek是打造专业大模型、 带钢卷取温度高精度预报 • 带钢跑偏预测分析 • 掉顶头异常识别 • 热轧管材表面质检 • 钢管识别跟踪 • 铸管外表面缺陷自动检测 • 铸管内壁缺陷自动检测 • 轧钢含油污泥油-水-固三相比例及成分分析 • 坯料库行车智能调度 • (棒材)多维度轧件堆拉关系分析 • 轧钢动态调度算法 • 产品质量在线控制无损检测 • 无缝钢管芯棒表面质检 • 无缝钢管制品芯棒插偏检测 • 冷轧带材精轧机架间钢带异常识别 • 冷轧带材机架间板形异常识别 业务大模型 打造 构建 智能体 基于政府企业场景和专业 知识,利用数据工场、知 识工场、模型工场,训练 业务大模型 DeepSeek基座大模型 59政企、创业者必读 关键基础之一:知识库打造 知识库打造是DeepSeek更懂企业的基础 知识自动汇集,不流失 多模态数据处理和理解 非结构化文档处理和理解 搜索,辅助内部办公和外部客户服务 为业务大模型RAG做准备 内部知识管理0 码力 | 76 页 | 5.02 MB | 5 月前3
国家人工智能产业综合标准化体系建设指南(2024版)等基础设施的技术要求和评估方法,包括基础设施参考架构、计 算能力评估、技术要求、稳定性要求和业务服务接口等标准。 6. 系统软件标准。规范人工智能系统层的软硬件技术要求, 包括软硬件编译器架构和优化方法、人工智能算子库、芯片软件 运行时库及调试工具、人工智能软硬件平台计算性能等标准。 7. 开发框架标准。规范人工智能开发框架相关的技术要求, 包括开发框架的功能要求,与应用系统之间的接口协议、神经网 络模型表达和压缩等标准。0 码力 | 13 页 | 701.84 KB | 1 年前3
人工智能安全治理框架 1.0据处理不当、非授 权访问、恶意攻击、诱导交互等问题,可能导致数据和个人信息泄露。 3.1.3 系统安全风险 (a)缺陷、后门被攻击利用风险。人工智能算法模型设计、训练和验证 的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 人为本、智能 向善”在人工智能研发应用中的具体操作指南和最佳实践,持续推进人工智能 设计、研发、应用的价值观、伦理观对齐。探索适应人工智能时代的版权保护 和开发利用制度,持续推进高质量基础语料库和数据集建设,为人工智能安全 发展提供优质营养供给。制定人工智能伦理审查准则、规范和指南,完善伦理 审查制度。 5.5 强化人工智能供应链安全保障。推动共享人工智能知识成果,开 源人工智能技术0 码力 | 20 页 | 3.79 MB | 1 月前3
Deepseek R1 本地部署完全手册GB ≥200 GB 消费级硬件(如Mac Studio) DeepSeek-R1-Q4_K_M 404 GB ≥500 GB ⾼性能服务器/云GPU 下载地址: HuggingFace模型库 Unsloth AI官⽅说明 2. 硬件配置建议 硬件类型 推荐配置 性能表现(短⽂本⽣成) 消费级设备 Mac Studio(192GB统⼀内存) 10+ token/秒 ⾼性能服务器 4×RTX0 码力 | 7 页 | 932.77 KB | 8 月前3
共 12 条
- 1
- 2













