清华大学 普通人如何抓住DeepSeek红利数据分析 趋势分析 多模态交互 任务执行 任务协调 工具调用 格式转换 关系抽取 语言理解 文案写作 代码注释 故事创作 通用问答 专业领域问答 因果推理 知识推理 问答系统 逻辑推理 自然语言处理 文本生成与创作 建议生成 风险评估 辅助决策 概念关联 知识整合 交互能力 情感分析 文本分类 图像理解 跨模态转换 专业建议 任务分解 情感回应 剧本或对话设计 l 摘要与改写 长文本摘要(论文 、报告) 文本简化(降低复杂度) 多语言翻译与本地化 l 结构化生成 表格 、列表生成(如日程安排 、 菜谱) 代码注释 、文档撰写 文本生成 文本生成 03 02 01 语义分析 • 语义解析 • 情感分析(评论、反馈) • 意图识别(客服对话、用户查 询) • 实体提取(人名、地点、事件) 知识推理 流园区项目方案书,客户临时提 前会议!”你大脑一片空白——手头只有零散的会议记录、几份过时的模板,且对“智能物流”技术细节不熟。电 脑右下角显示时间:3:05 PM,你手心冒汗,疯狂翻找资料,但文档光标始终停留在标题页…… 场景1:1小时内写完一个1万字的项目书 是否可用DeepSeek(深度求索)辅助处理? 可以,但需分阶段“榨干AI效率”,核心策略:框架复制+模块填充+数据嫁接。 分步解决方案:0 码力 | 65 页 | 4.47 MB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502企业政企、创业者必读 人工智能发展历程(一) 从早期基于规则的专家系统,走向基于学习训练的感知型AI 从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI 从擅长理解的认知型AI,发展到擅长文字生成的生成式AI 从语言生成式AI,发展到可理解和生成声音、图片、视频的多模态AI 从生成式AI,发展到推理型AI 专家系统 感知AI 认知AI 生成式AI 多模态AI 推理式AI 能力 6 AI Fo r Science 知识管理( 内部知识管理、 外部情报分析、 大数据分析、 工作流知识) 专家经验模型( 专业模型训练) 业务流程自动化( A g e n t框架) 组织协同( 工作流) 人机交互 赋能个人和 企业员工 生产力提升 多模态 能力 3 图片理解和处理 视频理解和处理 音频理解和处理 非结构化文档处理 47政企、创业者必读 DeepSeek能力很强大 四个“十倍”原则 四个方向 四个十倍 选择场景 分解流程 做过去只有人才能做的事 做人做的重复繁琐易出错的事 拆解繁琐复杂的业 务流程 55政企、创业者必读 场景选择示例:人员招聘系统 场景分得足够细,就可以训练对应的专业模型来解决问题 注:经360内部测试,深色的业务环节更加符合“四个十倍”原则 示例:人员招聘就是一个太大的、笼统的场景 需要细分成职位描述、简历筛选、面试评估等粒度更合适的场景0 码力 | 76 页 | 5.02 MB | 5 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 定位、需求预测、推荐系统、异常检测等。 对数据进行分类、社交网络分析或时序模式挖掘,常用 于客户细分、信用评分、社交媒体营销、股价预测等。 将数据转化为统计图、热力图、网络关系图、词云、树形 图等,用于揭示数据中蕴含的模式、趋势、异常和洞见。 多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5 垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。 长文本处理:擅长处理长文本 和复杂文档,适合专业场景。 定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini 小型化设计:轻量级模型, 适合资源有限的环境。 快速响应:优化推理速度, 案、法律意见书等,提高律师工作效率。 • 智能医疗数据分析与诊断:构建智能医疗 平台,分析病历、检查报告和基因数据,帮助 医生提供更准确的诊断与治疗方案。 • 金融风险预测与管理:开发金融风险分析 工具,收集并分析市场数据,预测风险并为金 融机构提供管理建议。 • 智能文学创作辅助:为作家提供创作灵感 和文本构思,生成符合中文文学传统的故事情 节和诗句,助力突破创作瓶颈。 • 智能广告创意生成:根据产品特点和目标0 码力 | 85 页 | 8.31 MB | 8 月前3
DeepSeek从入门到精通(20250204)、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 营销文案、广告语生成 社交媒体内容(如推文、帖子) 剧本或对话设计 文本创作 长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 常规绘图 ① 解决独居老人安全问题; ② 结合传感器网络和AI预警; ③ 提供三种不同技术路线的原型草图说明。" �实战技巧: 还要不要学提示语? 提示语(Prompt)是用户输入给AI系统的指令或信息,用于 引导AI生成特定的输出或执行特定的任务。简单来说,提示语 就是我们与AI“对话”时所使用的语言,它可以是一个简单的问 题,一段详细的指令,也可以是一个复杂的任务描述。 提示语的基本结构包括指令、上下文和期望0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通、语义理解、计算推理、代码生成补全等应用场景, 支持联网搜索与深度思考模式,同时支持文件上传,能够扫描读取各类文件及图片中的文字内容。 文本生成 表格、列表生成(如日程安排、菜谱) 代码注释、文档撰写 结构化生成 文章/故事/诗歌写作 营销文案、广告语生成 社交媒体内容(如推文、帖子) 剧本或对话设计 文本创作 长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 常规绘图 ① 解决独居老人安全问题; ② 结合传感器网络和AI预警; ③ 提供三种不同技术路线的原型草图说明。" �实战技巧: 还要不要学提示语? 提示语(Prompt)是用户输入给AI系统的指令或信息,用于 引导AI生成特定的输出或执行特定的任务。简单来说,提示语 就是我们与AI“对话”时所使用的语言,它可以是一个简单的问 题,一段详细的指令,也可以是一个复杂的任务描述。 提示语的基本结构包括指令、上下文和期望0 码力 | 103 页 | 5.40 MB | 8 月前3
普通人学AI指南它可以理解、学习和应用知识跨越各种不同领域,功能上等同于人类智能。 与专用人工智能(AI)不同,AGI 能够执行任何智力任务,具备自我意识和 自适应学习能力。AGI 的研发目标是创造出可以广泛地模拟人类认知能力的智 能系统。 1.3 大模型 大模型通常指的是大规模的人工智能模型,这类模型通过训练大量的数据来获 得广泛的知识和能力。这些模型通常具有庞大的参数数量,能够处理复杂的任 务,如自然语言理解、图像识别、语音识别等。 上下文窗口大小决定了模型在回答问题或生成文本时可以利用的上下文范 围。窗口越大,模型就能处理越长的上下文,对理解长文本内容非常重要。 较大的窗口允许模型处理更长的文本片段,从而提高在长文本任务中的表 现,如长篇对话、文档生成和分析等。 1.4.2 单位 B 和 T 在 AI 大模型中,常用的两个单位是 B 和 T。 B(十亿,Billion):在英文里是 Billion 的缩写,表示十亿。对于 AI 大模型 来说,B 6: AI 编程工具 2.4.3 AirOps 用于生成和修改 SQL 语句的工具,旨在简化数据库操作。 2.4.4 ChatDev 面壁智能开发的 AI 智能体开发平台,支持创建和部署智能对话系统。 2.4.5 solo Mozilla 开源项目,提供零代码网站开发功能,易于使用。 2.4.6 Cursor 开源的 AI 代码编辑器,旨在通过 AI 技术助力快速软件开发。 2.4.70 码力 | 42 页 | 8.39 MB | 8 月前3
人工智能安全治理框架 1.0对 措施。关注安全风险发展变化,快速动态精准调整治理措施,持续优化治理机 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发 应用生态链,明确模型算法研发者、服务提供者、使用者等相关主体的安全责 任,有机发挥政府监管、行业自律、社会监督等治理机制作用。 共享最佳实践,提倡建立开放性平台,通过跨学科、跨领域、跨地区、跨国界 的对话和合作,推动形成具有广泛共识的全球人工智能治理体系。 2. 人工智能安全治理框架构成 基于风险管理理念,本框架针对不同类型的人工智能安全风险,从技术、 管理两方面提出防范应对措施。同时,目前人工智能研发应用仍在快速发展, 安全风险的表现形式、影响程度、认识感知亦随之变化,防范应对措施也将相 应动态调整更新,需要各方共同对治理框架持续优化完善。 手段,推动各方协同共治。 2.4 安全开发应用指引方面。明确模型算法研发者、服务提供者、重点 领域用户和社会公众用户,开发应用人工智能技术的若干安全指导规范。 3. 人工智能安全风险分类 人工智能系统设计、研发、训练、测试、部署、使用、维护等生命周期 各环节都面临安全风险,既面临自身技术缺陷、不足带来的风险,也面临不当 使用、滥用甚至恶意利用带来的安全风险。 3.1 人工智能内生安全风险0 码力 | 20 页 | 3.79 MB | 1 月前3
国家人工智能产业综合标准化体系建设指南(2024版)国家人工智能产业综合标准化体系建设指南 (2024版) 为深入贯彻落实党中央、国务院关于加快发展人工智能 的部署要求,贯彻落实《国家标准化发展纲要》《全球人工 智能治理倡议》,进一步加强人工智能标准化工作系统谋划, 加快构建满足人工智能产业高质量发展和“人工智能+”高水 平赋能需求的标准体系,夯实标准对推动技术进步、促进企 业发展、引领产业升级、保障产业安全的支撑作用,更好推 进人工智能赋能新型工业化,特制定本指南。 基础共性标准主要包括人工智能术语、参考架构、测试评估、 管理、可持续等标准。 1. 术语标准。规范人工智能相关技术、应用的概念定义, 为其它标准的制定和人工智能研究提供参考,包括人工智能相关 术语定义、范畴、实例等标准。 2. 参考架构标准。规范人工智能相关技术、应用及系统的 逻辑关系和相互作用,包括人工智能参考架构、人工智能系统生 命周期及利益相关方等标准。 3. 测试评估标准。规范人工智能技术发展的成熟度、人工 企业智能化能力框架及测评要求等标准。 4. 管理标准。规范人工智能技术、产品、系统、服务等全 生命周期涉及的人员、组织管理要求和评价,包括面向人工智能 组织的管理要求,人工智能管理体系、分类方法、评级流程等标 准。 5. 可持续标准。规范人工智能影响环境的技术框架、方法 和指标,平衡产业发展与环境保护,包括促进生态可持续的人工 智能软件开源基础框架,人工智能系统能效评价,人工智能与资 7 源利用、碳排放、废弃部件处置等标准。0 码力 | 13 页 | 701.84 KB | 1 年前3
开源中国 2023 大模型(LLM)技术报告是利用深度学习和大数据训练的人工智能系统,专门 设计来理解、生成和回应自然语言。这些模型通过分析大量 的文本数据来学习语言的结构和用法,从而能够执行各种语 言相关任务。以 GPT 系列为代表,LLM 以其在自然语言 处理领域的卓越表现,成为推动语言理解、生成和应用的引 擎。 LLM 在多个领域都取得了令人瞩目的成就。在自然语言处 理领域,GPT 系列模型在文本生成、问答系统和对话生成 等任务中展现出色的性能。在知识图谱构建、智能助手开发 提供高效的存储和检索能力。通过数据向量化,实现了 在向量数据库中进行高效的相似性计算和查询。 根据向量数据库的的实现方式,可以将向量数据库大致分为两类: 原生的向量数据库专门为存储和检索向量而设计, 所管理的数据是基于对象或数据点的向量表示进行 组织和索引。 包括 等均属于原生向量数据库。 除了选择专业的向量数据库,对传统数据库添加 “向量支持”也是主流方案。比如 等传 统数据库均已支持向量检索。 基础设施:大模型框架及微调 (Fine Tuning) 大模型框架指专门设计用于构建、训练和部署大型机器 学习模型和深度学习模型的软件框架。这些框架提供了 必要的工具和库,使开发者能够更容易地处理大量的数 据、管理巨大的网络参数量,并有效地利用硬件资源。 微调(Fine Tuning)是在大模型框架基础上进行的一个 关键步骤。在模型经过初步的大规模预训练后,微调是 用较小、特定领域的数据集对模型进行后续训练,以使0 码力 | 32 页 | 13.09 MB | 1 年前3
清华大学第二弹:DeepSeek赋能职场题解决能力 Agent •代表用户执行任 务,具备自主行 动能力 Innovator • 参与发明和创造, 增强人类的创造力 和创新能力 Organization •承担整个组织的 功能,独立管理 并执行复杂的操 作 • 致力于人机协同和人机共生领域的世界级团队,专注于打造能够驾驭AI、熟悉AI并实现人类与AI共生发展的学术与实践模式。 团队愿景 • 李默非(清华大学人工智能学院拟录博士生):人机共生之基座大模型研究研发 定义AI的角色: 经验丰富的数据分析师 具备十年销售经验的SaaS系统商务 …… Task(任务) 具体任务描述: 写一份关于XXX活动的小红书宣推文案 写一份关于XX事件的舆论分析报告 (XX活动/事件相关背景信息如下……) Goal(目标) 期望达成什么目标效果: 通过该文案吸引潜在客户,促成消 费……通过该报告为相关企业管理 者提供……策略支撑 Objective(操作要 求) (Identity) •角色属性 •专业背景 •交互特征 执行层: 2. 能力矩阵 (Capability Matrix) •功能范围 •专业技能 •决策权限 约束层: 3. 边界系统 (Boundary System) •伦理规范 •安全限制 •资源约束 操作层: 4. 工作引擎 (Operation Engine) •输入处理 •执行流程 •输出规范 如何使用DeepSeek制作可视化图表?0 码力 | 35 页 | 9.78 MB | 8 月前3
共 12 条
- 1
- 2













