清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单能做什么? 要怎么做? 效果如何? 一 能做什么? 数据挖掘 数据分析 数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 用户在不同科研需求下得到充分支持。 增强版绘图功能:增强版具备绘图功能,可通过可视化 图示(如文献关键词共现图)直观展示综述内容,帮助 用户更好理解和呈现研究成果。 无数据检索:以现有真实数据库作为支撑,通过关键词 检索,自动搜集相关文献并生成综述报告,目前只支持 英文检索。 低重复率:结合现有查重机制与AI技术,在内容生成阶 段引入重复检测与优化策略,从源头上降低重复率风险, 所生成的综述普通重复率与AIGC重复率均在5%以下。 无限双语数据导入:支持中文与英文文献的导入,并且 文献数据量没有限制,能够轻松处理中文文献的系统性 梳理,以及国际文献的跨语言分析。 幻觉克服:以现有真实数据库作为支撑,借助由专家设 计撰写的提示词,精准规避AI生成中的幻觉问题。 高规范格式输出:所生成的综述文档格式规范、结构清 晰,符合学术论文标准,用户几乎无需进行二次整理。 中科院PubScholar平台0 码力 | 85 页 | 8.31 MB | 8 月前3
国家人工智能产业综合标准化体系建设指南(2024版)据治 理、数据质量等标准。 2. 智能芯片标准。规范智能芯片相关的通用技术要求,包 括智能芯片架构、指令集、统一编程接口及相关测试要求、芯片 数据格式和协议等标准。 3. 智能传感器标准。规范单模态、多模态新型传感器的接 口协议、性能评定、试验方法等技术要求,包括智能传感器的架 构、指令、数据格式、信息提取方法、信息融合方法、功能集成 方法、性能指标和评价方法等标准。 4. 计算 计算设备标准。规范人工智能加速卡、人工智能加速模 组、人工智能服务器等计算设备,及使能软件的技术要求和测试 方法,包括人工智能计算设备虚拟化方法,人工智能加速模组接 口协议和测试方法,及使能软件的访问协议、功能、性能、能效 的测试方法和运行维护要求等标准。 5. 算力中心标准。规范面向人工智能的大规模计算集群、 新型数据中心、智算中心、基础网络通信、算力网络、数据存储 8 等基础设施的 开发框架标准。规范人工智能开发框架相关的技术要求, 包括开发框架的功能要求,与应用系统之间的接口协议、神经网 络模型表达和压缩等标准。 8. 软硬件协同标准。规范智能芯片、计算设备等硬件与系 统软件、开发框架等软件之间的适配要求,包括智能芯片与开发 框架的适配要求、人工智能计算任务调度、分布式计算等软硬件 协同任务的交互协议、执行效率和协同性能等标准。 (三)关键技术标准 关键技术标准主要包括机器学习、知识图谱、大模型、自然0 码力 | 13 页 | 701.84 KB | 1 年前3
开源中国 2023 大模型(LLM)技术报告生成、文本摘要、翻译等任务中展现了强大的通用性。 本报告从技术人视角出发,将深入探讨 LLM 技术的背景、 基础设施、应用现状,以及相关的工具和平台。 2 / 32 LLM Tech Map 向量数据库 数据库向量支持 大模型框架、微调 (Fine Tuning) 大模型训练平台与工具 基础设施 LLM Agent 备案上线的中国大模型 知名大模型 知名大模型应用 大模型 04 向量数据库/数据库向量支持 为大模型提供高效的存储和检索能力 大模型框架及微调 (Fine Tuning) 大模型框架提供基本能力和普适性,而微调 则是实现特定应用和优化性能的关键环节 大模型训练平台&工具 提供了在不同硬件和环境中训练大语言模型 所需的基础设施和支持 编程语言 以 Python 为代表 5 / 32 LLM 基础设施:向量数据库/数据库向量支持 向量数据库是专门用于存储和检索向量数据的数据库,它可以为 LLM 提供高效的存储和检索能力。通过数据向量化,实现了 在向量数据库中进行高效的相似性计算和查询。 根据向量数据库的的实现方式,可以将向量数据库大致分为两类: 原生的向量数据库专门为存储和检索向量而设计, 所管理的数据是基于对象或数据点的向量表示进行 组织和索引。 包括 等均属于原生向量数据库。 除了选择专业的向量数据库,对传统数据库添加0 码力 | 32 页 | 13.09 MB | 1 年前3
人工智能安全治理框架 1.0(a)服务提供者应公开人工智能产品和服务的能力、局限性、适用人群、 场景。- 14 - 人工智能安全治理框架 (b)服务提供者应在合同或服务协议中,以使用者易于理解的方式,告 知人工智能产品和服务的适用范围、注意事项、使用禁忌,支持使用者知情选 择、审慎使用。 (c)服务提供者应在告知同意、服务协议等文件中,支持使用者行使人 类监督和控制责任。 (d)服务提供者应让使用者了解人工智能产品的精确度,在人工智能决 件下抵御或克服不利条件的能力,防范出现意外结果和行为错误,确保最低限 度有效功能。 (h)服务提供者应将人工智能系统运行中发现的安全事故、安全漏洞等 及时向主管部门报告。 (i)服务提供者应在合同或服务协议中明确,一旦发现不符合使用意图 和说明限制的误用、滥用,服务提供者有权采取纠正措施或提前终止服务。 (j)服务提供者应评估人工智能产品对使用者的影响,防止对使用者身 心健康、生命财产等造成危害。 6.4 社会公众安全应用指引 (a)社会公众应提高对人工智能产品安全风险的认识,选择信誉良好的 人工智能产品。- 16 - 人工智能安全治理框架 (b)社会公众应在使用前仔细阅读产品合同或服务协议,了解产品的功 能、限制和隐私政策,准确认知人工智能产品做出判断决策的局限性,合理设 定使用预期。 (c)社会公众应提高个人信息保护意识,避免在不必要的情况下输入敏 感信息。 (d)社会公0 码力 | 20 页 | 3.79 MB | 1 月前3
清华大学 普通人如何抓住DeepSeek红利现异常指标 场景3:突发事件应急管理与跨界协调 情景还原:台风突袭导致孕期34周妻子被困郊区、数据中心备用电源仅能维持4小时、急需转移独居失智老 人、社区抢购导致物资短缺 DeepSeek应急协议: ① 资源热力图: 实时整合气象局数据/道路塌方报告/医院接诊状态 物资预测算法锁定3公里内未饱和便利店 ② 生命线工程: 孕妇救援通道: ✓ 自动生成医疗档案二维码 ✓ 无人机勘察可行路线 ✓ 协调民间救援队GPS定位0 码力 | 65 页 | 4.47 MB | 8 月前3
普通人学AI指南AI 编程开发助手,集成在 JetBrains 系列开发工具中,提升编码效率。 9 Figure 6: AI 编程工具 2.4.3 AirOps 用于生成和修改 SQL 语句的工具,旨在简化数据库操作。 2.4.4 ChatDev 面壁智能开发的 AI 智能体开发平台,支持创建和部署智能对话系统。 2.4.5 solo Mozilla 开源项目,提供零代码网站开发功能,易于使用。 20 码力 | 42 页 | 8.39 MB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502智能体应用案例:定义角色、分解流程 社区医生手工填写患者病历 并传真到斯坦福预约中心 传统人工预约流程 AI辅助预约流程 传真识别智能体 接到传真,人工查看病历 利用多模态大模型,识别传真病历, 并自动录入数据库 数字人打电话给患者,预约就诊时间 大模型查询保险知识库,自动生成理赔申请, 提交保险公司 就诊预约智能体 保险报告生成智能体 人工打电话给患者,预约就诊时间 病人到医院就诊 人工填写理赔申请,提交保险公司0 码力 | 76 页 | 5.02 MB | 5 月前3
DeepSeek从入门到精通(20250204)应对威胁。 c.解释签名式防御如何类似于抗体,能够快速识别和中和已知威胁。 d.比较系统隔离和清理过程与人体发烧的相似性,都是为了控制“感染”扩散。 e.讨论威胁情报数据库如何类似于免疫记忆,使系统能够更快地应对重复出现的威胁。 (3)深入探讨启示: a.分析免疫系统的适应性如何启发自适应安全系统的设计。 b.探讨免疫系统的分层防御策略如何应用于网络安全的纵深防御概念。0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通应对威胁。 c.解释签名式防御如何类似于抗体,能够快速识别和中和已知威胁。 d.比较系统隔离和清理过程与人体发烧的相似性,都是为了控制“感染”扩散。 e.讨论威胁情报数据库如何类似于免疫记忆,使系统能够更快地应对重复出现的威胁。 (3)深入探讨启示: a.分析免疫系统的适应性如何启发自适应安全系统的设计。 b.探讨免疫系统的分层防御策略如何应用于网络安全的纵深防御概念。0 码力 | 103 页 | 5.40 MB | 8 月前3
共 9 条
- 1













