积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(10)人工智能(10)

语言

全部中文(简体)(8)中文(简体)(2)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.026 秒,为您找到相关结果约 10 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 定位、需求预测、推荐系统、异常检测等。 对数据进行分类、社交网络分析或时序模式挖掘,常用 结论 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 文本数据集成 1、分别阅读约7000token和15000token的文 本内容,测试模型对中、长文本处理效果 2、整理集成可视化的数据表格 3、按照日期规范排序 任务 Open AI o3mini 一般文本(7000token): 能够高效提取文本中的数据, 数据,输出格式规范的数据 表格,但集成数据维度仍然 不够全面。 DeepSeek R1 一般文本(7000token):能 详细全面地提取文本数据,并 集成可视化表格,但受大样本 或模型稳定性影响,输出表格 末尾缺失,需要重复尝试生成。 长文本(15000token):暂时 无法给出答复。 【所需阅读文本】请根据以上文本完成以下三个任务:1、阅读 文本内容;2、整理集成可视化的数据表格;3、按照日期规范排
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    Chain):促进创新思维和独特见解 三链融合模型 逻辑链优化策略 知识链优化策略 • 应用形式逻辑原理 • 构建论证结构图 • 使用逻辑关系词强 化连接 • 构建多层次知识图谱 • 实施知识检索与集成 • 进行跨域知识映射 优化提示语链不仅在于提示语的微调,更在于逻辑链、知识链与创意链的有效整合与融合。通过整合这三条链 条,可以提升生成内容的逻辑严谨性、知识广度与创新深度,达到最佳平衡。 链的设计提供系统化的指导。 构思阶段注重创新性思 维,探索多种解决方案 在发展阶段,逐步深化 构思并形成具体的内容 方案 最后的评估阶段用于反 思和优化,确保生成内 容符合预期标准并持续 改进 成果展示与改进建议 通过以下反思和评估的框架对AI 生成内容进行审查与质量评估: 内容全面性 论证深度 创新洞见 实践指导 结构清晰度 语言表达 跨学科整合 未来展望 (1)气候变化的科学证据 (2)当前和预期的影响 (3)减缓和适应策略 (4)个人和集体行动的重要性 4. 主题引导符 • 主要关键词:气候变化、全球变暖、环境保护 • 次要关键词:碳排放、可再生能源、可持续发展 主题原型构建 确定主题的核心特征和典型例子 语义框架设置 创建与主题相关的概念网络 重点梯度建立 设定主题相关性的层级结构 细节增强策略(DES):深化内容质量 �DES的理论基础:
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    Chain):促进创新思维和独特见解 三链融合模型 逻辑链优化策略 知识链优化策略 • 应用形式逻辑原理 • 构建论证结构图 • 使用逻辑关系词强 化连接 • 构建多层次知识图谱 • 实施知识检索与集成 • 进行跨域知识映射 优化提示语链不仅在于提示语的微调,更在于逻辑链、知识链与创意链的有效整合与融合。通过整合这三条链 条,可以提升生成内容的逻辑严谨性、知识广度与创新深度,达到最佳平衡。 链的设计提供系统化的指导。 构思阶段注重创新性思 维,探索多种解决方案 在发展阶段,逐步深化 构思并形成具体的内容 方案 最后的评估阶段用于反 思和优化,确保生成内 容符合预期标准并持续 改进 成果展示与改进建议 通过以下反思和评估的框架对AI 生成内容进行审查与质量评估: 内容全面性 论证深度 创新洞见 实践指导 结构清晰度 语言表达 跨学科整合 未来展望 (1)气候变化的科学证据 (2)当前和预期的影响 (3)减缓和适应策略 (4)个人和集体行动的重要性 4. 主题引导符 • 主要关键词:气候变化、全球变暖、环境保护 • 次要关键词:碳排放、可再生能源、可持续发展 主题原型构建 确定主题的核心特征和典型例子 语义框架设置 创建与主题相关的概念网络 重点梯度建立 设定主题相关性的层级结构 细节增强策略(DES):深化内容质量 �DES的理论基础:
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 国家人工智能产业综合标准化体系建设指南(2024版)

    善人工智能标准工作顶层设计,强化全产业链标准工作协 同,统筹推进标准的研究、制定、实施和国际化,为推动我 国人工智能产业高质量发展提供坚实的技术支撑。 到 2026 年,标准与产业科技创新的联动水平持续提升, 新制定国家标准和行业标准 50 项以上,引领人工智能产业 高质量发展的标准体系加快形成。开展标准宣贯和实施推广 的企业超过 1000 家,标准服务企业创新发展的成效更加凸 显。参与制定国际标准 全/治理等 7 个部分组成,如图 2 所示。 5 图 2 人工智能标准体系框架图 6 四、重点方向 (一)基础共性标准 基础共性标准主要包括人工智能术语、参考架构、测试评估、 管理、可持续等标准。 1. 术语标准。规范人工智能相关技术、应用的概念定义, 为其它标准的制定和人工智能研究提供参考,包括人工智能相关 术语定义、范畴、实例等标准。 2. 参考架构标准。规范人工智能相关技术、应用及系统的 管理标准。规范人工智能技术、产品、系统、服务等全 生命周期涉及的人员、组织管理要求和评价,包括面向人工智能 组织的管理要求,人工智能管理体系、分类方法、评级流程等标 准。 5. 可持续标准。规范人工智能影响环境的技术框架、方法 和指标,平衡产业发展与环境保护,包括促进生态可持续的人工 智能软件开源基础框架,人工智能系统能效评价,人工智能与资 7 源利用、碳排放、废弃部件处置等标准。 (二)基础支撑标准 基础支撑标准
    0 码力 | 13 页 | 701.84 KB | 1 年前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    队的偏好。 。它的广泛使用得 益于其简洁的语法、强大的库支持(如 )和深度学习框架(如 )。 此外, ,C++ 有时 用于优化计算密集型任务,而 Java 在企业环境中处理模型部署和系 统集成方面常见。JavaScript 适用于 Web 环境的 LLM 应用。 13 / 32 LLM 基础设施:编程语言 2023 年是大语言模型 (LLM) 之年,Python 作为人工智能领域使用度最高的编程语言,在 基础设施方案,覆盖深度学习领域推理和训练全流程。 被外界视为打破 NVIDIA 垄断 AI 算力市场的多一种选择,其基于第三代 CDNA 架构,为生 成式 AI 大语言模型设计的 MI300X 内存高达 192GB,集成了高达 1530 亿个晶体管,为历代产品 之最。 科技团队自研,面向通用AI计算的芯片核心架构昆仑芯 XPU 从AI落地的实际需求出发,按 照复杂前沿的人工智能场景需求开展迭代,致力为开发者提供通用、易用、高性能的算力来源。 自主研发,可独立发展演进。 30 / 32 LLM 世界的基石:算力 算力也是全国乃至世界范围内 LLM 相关企业遇到的最大难题: 随着国内大模型数量激增,AI 算力需求从 2022 年开始持续上 涨,国内市场出现一卡难求的情况。根据 IDC 预计,到 2026 年 AI 推理的负载比例将进一步提升至62.2%,特别是预训练大 模型几乎成为 AI 开发的标准范式。同时,这一需求也导致了
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    技术开放,吸引广大开发人员和用户使用  很多公司参与开源,帮助改进产品,众人拾柴火焰高, 反哺开源产品,形成正循环政企、创业者必读 DeepSeek出现之前的十大预判 之十 中美差距快速缩小  美国预训练堆算力的路线不可持续,有待发现新范式“换道超车”  软件和算法差距并不大,主要差距在工程、硬件等方面 23政企、创业者必读 DeepSeek的出现验证了我们的预判 而DeepSeek的创新更具颠覆性 24政企、创业者必读 搭载DeepSeek-R1联网满血版模型,且服务非常稳定  支持语音搜、拍照问,直接生成答案,支持文生图、图 生视频,用户体验超过官方版DeepSeek  实现“实时搜索+复杂推理”的完全融合  集成国内16家大模型厂商50多款模型,用户可自由选 择模型,并可多模型协作  可打造个人智能体 70政企、创业者必读 企业应用智能体的九层能力 阶段1-4——初级能力 阶段2 企业私有化部署DeepSeek
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    推动政府、国际组织、企业、科研院所、民间机构和社会公众等各方,就人工 智能安全治理达成共识、协调一致,有效防范化解人工智能安全风险,制定本 框架。 1. 人工智能安全治理原则 秉持共同、综合、合作、可持续的安全观,坚持发展和安全并重,以促 进人工智能创新发展为第一要务,以有效防范化解人工智能安全风险为出发点 和落脚点,构建各方共同参与、技管结合、分工协作的治理机制,压实相关主 体安全责任,打造 1.2 风险导向、敏捷治理。密切跟踪人工智能研发及应用趋势,从人工 智能技术自身、人工智能应用两方面分析梳理安全风险,提出针对性防范应对 措施。关注安全风险发展变化,快速动态精准调整治理措施,持续优化治理机 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发 险,从技术、 管理两方面提出防范应对措施。同时,目前人工智能研发应用仍在快速发展, 安全风险的表现形式、影响程度、认识感知亦随之变化,防范应对措施也将相 应动态调整更新,需要各方共同对治理框架持续优化完善。 2.1 安全风险方面。通过分析人工智能技术特性,以及在不同行业领域 应用场景,梳理人工智能技术本身,及其在应用过程中面临的各种安全风险 隐患。 2.2 技术应对措施方面。针对模型算法、训练数据、算力设施、产品服务、
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    维与逻辑判断能力,通过选择最优答案,实现解决方案的创新 性再生。 p 智慧赋能的决策力 提出问题与甄别答案的能力,使人类在信息爆炸与AI辅助的时代,通过决策行为实现价值创造,成为社会发 展的持续动力。 善用DeepSeek的两大关键:提出问题 鉴别答案 DeepSeek是什么? • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应用。 • Deep 启动边缘计算节点转移关键数据 生成政府灾情报告模板(自动填充损失评估) ④ 社会协作: 创建临时物资交换区块链账本 多语言求援信息自动生成(对接领事馆系统) 技术红利: 救援响应速度提升3.2倍,资产损失减少78%,危机持续时间压 缩56% p 第一步:全面描述整体情景 p 第二步:分项深入探讨,获取针对性建议 p 第三步:请求综合协调与优先级排序 p 第四步:补充详细背景信息(视情况而定) 如何使用DeepSeek处理社交关系
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 普通人学AI指南

    风格应用到视频帧中。 2.4 AI 编程工具 2.4.1 DEvv 程序员的新一代 AI 搜索引擎,专为编程和技术问题检索设计。 2.4.2 JetBrains AI AI 编程开发助手,集成在 JetBrains 系列开发工具中,提升编码效率。 9 Figure 6: AI 编程工具 2.4.3 AirOps 用于生成和修改 SQL 语句的工具,旨在简化数据库操作。 2.4.4 指令大全。 11 2.5.3 SD 提示词手册 为 Stability Diffusion (SD) 提供的提示词手册,旨在帮助用户更有效地使用该 模型。 2.5.4 PromptHero 一个集成了 ChatGPT、MJ、SD 等多个 AI 模型提示词的平台,提供可视化 AI 提示语的工具。 2.5.5 可视化 AI 提示语 Figure 9: 可视化提示词 网址:https://tools
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    I(投资回报率)。 ⼆、本地部署核⼼配置要求 1. 模型参数与硬件对应表 模型参 数 Windows 配置要求 Mac 配置要求 适⽤场景 1.5B - RAM: 4GB - GPU: 集成显卡/现代CPU - 存储: 5GB - 内存: 8GB (M1/M2/M3) - 存储: 5GB 简单⽂本⽣成、基础代 码补全 7B - RAM: 8-10GB - GPU: GTX
    0 码力 | 7 页 | 932.77 KB | 8 月前
    3
共 10 条
  • 1
前往
页
相关搜索词
清华大学DeepSeekDeepResearch科研入门精通20250204清华华大大学国家人工智能人工智能产业综合标准标准化体系建设指南2024开源中国2023模型LLM技术报告周鸿祎演讲我们带来创业机会360202502安全治理框架1.0普通通人普通人如何抓住红利AIDeepseekR1本地部署完全手册
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩